HYDROLOGIC DATA FOR URBAN STUDIES IN THE HOUSTON METROPOLITAN AREA, TEXAS, 1984 By Fred Liscum, J. P. Bruchmiller, D. W. Brown, and E. M. Paul U.S. GEOLOGICAL SURVEY Open-File Report 86-608 Prepared in cooperation with the CITY OF HOUSTON Austin, Texas # UNITED STATES DEPARTMENT OF THE INTERIOR DONALD PAUL HODEL, Secretary GEOLOGICAL SURVEY Dallas L. Peck, Director For additional information write to: District Chief U.S. Geological Survey 300 East 8th Street Austin, TX 78701 Copies of this report can be purchased from: Open-File Services Section Western Distribution Branch Box 25425, Federal Center Denver, CO 80225 Telephone: (303) 236-7476 # CONTENTS | | Page | |---|------| | Introduction | 1 | | Location and description of the area | | | Data-collection methods | | | Precipitation data | 2 | | Runoff data | | | Water-quality data | | | Selected references | | | Compilation of data | | | Buffalo Bayou: | | | Buffalo Bayou near Addicks, Tex | 18 | | Buffalo Bayou at West Belt Drive, Houston, Tex | 19 | | Bettina Street Ditch drainage basin | 22 | | Bettina Street Ditch at Kimberly Street at Houston, Tex | 25 | | Storm of March 23-24, 1984 | | | Buffalo Bayou at Piney Point, Tex | 28 | | Buffalo Bayou at Houston, Tex | 29 | | Whiteoak Bayou: | | | Whiteoak Bayou drainage basin | 30 | | Cole Creek drainage basin | 32 | | Bingle Road Storm Sewer drainage basin | 34 | | Bingle Road Storm Sewer at Houston, Tex | 37 | | Storm of July 5, 1984 | 39 | | Cole Creek at Deihl Road, Houston, Tex | 41 | | Storm of July 18-20, 1984 | 42 | | Brickhouse Gully drainage basin | 43 | | Brickhouse Gully at Clarblak Street, Houston, Tex | 46 | | Storm of July 18-19, 1984 | 47 | | Brickhouse Gully at Costa Rica Street, Houston, Tex | 48 | | Storm of July 18-20, 1984 | 49 | | Lazybrook Street Storm Sewer drainage basin | 50 | | Lazybrook Street Storm Sewer at Houston, Tex | 53 | | Storm of March 23, 1984 | | | Storm of July 5, 1984 | 56 | | Storm of Aug. 5, 1984 | 57 | | Whiteoak Bayou at Houston, Tex | 59 | | Storm of March 23-25, 1984 | | | Storm of June 6-8, 1984 | 63 | | Little Whiteoak Bayou drainage basin | 65 | | Little Whiteoak Bayou at Trimble Street, Houston, Tex | 68 | | Storm of Jan. 9-10, 1984 | 70 | | Brays Bayou: | 70 | | Brays Bayou drainage basin | 72 | | Brays Bayou at Alief, Tex | /0 | | Storm of June 6-8, 1984 | 11 | | Keegans Bayou drainage basin | /8 | | Keegans Bayou at Keegan Road near Houston, Tex | ΩŢ | | Storm of July 18-21, 1984 | Ö۷ | # CONTENTS--Continued | | Page | |--|------| | Compilation of dataContinued | | | San Jacinto River basinContinued | | | Brays Bayou:Continued | | | Keegans Bayou at Roark Road near Houston, Tex | 83 | | Storm of June 6-10, 1984 | 84 | | Brays Bayou at Gessner Drive, Houston Tex | | | Storm of Nov. 30 to Dec. 2, 1983 | 86 | | Hummingbird Street Ditch drainage basin | 88 | | Hummingbird Street Ditch at Houston, Tex | 91 | | Storm of Nov. 30, 1983 | 92 | | Brays Bayou at Houston, Tex | | | Storm of Jan. 8-11, 1984 | | | Storm of March 23-25, 1984 | 98 | | Sims Bayou: | 00 | | Sims Bayou drainage basin | | | Sims Bayou at Hiram Clarke Street, Houston, Tex | | | Storm of Jan. 8-10, 1984 | 107 | | Sims Bayou at Martin Luther King Boulevard, Houston, Tex | | | Storm of Jan. 9-11, 1984 | | | Sims Bayou at Houston, Tex | 111 | | Storm of Jan. 8-12, 1984 | | | Berry Bayou drainage basin | | | Berry Bayou at Gilpin Street, Houston, Tex | | | Storm of Aug. 12-13, 1984 | 119 | | Berry Bayou at Forest Oaks Street, Houston, Tex | | | Storm of Aug. 12-13, 1984 | 121 | | Vince Bayou: | | | Vince Bayou drainage basin | 122 | | Vince Bayou at Pasadena, Tex | 125 | | Storm of Aug. 12-13, 1984 | 126 | | Hunting Bayou: | | | Hunting Bayou drainage basin | 127 | | Hunting Bayou at Falls Street, Houston, Tex | 130 | | Storm of Jan. 9-10, 1984 | 132 | | Hunting Bayou at Interstate Highway 610, Houston, Tex | 134 | | Storm of Jan. 9-12, 1984 | 136 | | Greens Bayou: | 1.20 | | Greens Bayou drainage basin | | | Greens Bayou at Cutten Road near Houston, Tex | 142 | | | | | Greens Bayou at U.S. Highway 75 near Houston, Tex | 1/6 | | Storm of Feb. 12-14, 1984 | 145 | | Greens Bayou near Houston, Tex | 140 | | Storm of Jan. 9-12, 1984 | 149 | | Halls Bayou drainage basin | | # CONTENTS--Continued | | Page | |---|------| | Compilation of dataContinued | | | San Jacinto River basin:Continued | | | Greens Bayou:Continued | | | Halls Bayou at Deertrail Street near Houston, Tex | 154 | | Storm of Jan. 9-10, 1984 | | | Storm of Feb. 12-13, 1984 | | | Halls Bayou at Houston, Tex | | | Greens Bayou at Ley Road, Houston, Tex | | | Storm of Jan. 9-12, 1984 | | | · | 102 | | Clear Creek basin: | 160 | | Clear Creek near Pearland, Tex | .163 | | Daily and monthly rainfall summary, in inches, for gages | | | north of Buffalo Bayou, 1983 water year | ·168 | | Daily and monthly rainfall summary, in inches, for gages | | | south of Buffalo Bayou | -177 | | Monthly rainfall-data summary in the Houston metropolitan | | | area, National Weather Service Stations, 1984 water year | 100 | | alea, Nacional Meacher Service Scations, 1307 Water year | 130 | # ILLUSTRATIONS | | | | Page | |----------|-----|---|------| | Figure | 1. | Map showing locations of data-collection sites | | | . | | in the Houston urban study area | 3 | | | 2. | Graph showing rainfall at five drainage basins | · | | | | in the Houston metropolitan area, 1984 water | | | | | year | 6 | | | 3. | Graph showing runoff from six drainage basins | | | | | in the Houston metropolitan area, 1984 water | | | | | year, and average runoff for the period 1953-70 | 13 | | 4- | 20. | Map showing locations of data-collection sites in | | | | | and near the: | | | | 4. | Bettina Street Ditch drainage basin | 23 | | | 5. | Whiteoak Bayou drainage basin | 31 | | | 6. | Cole Creek drainage basin | 33 | | | 7. | Bingle Road Storm Sewer drainage basin | 35 | | | 8. | Brickhouse Gully drainage basin | | | | 9. | Lazybrook Street Storm Sewer drainage basin | 51 | | | 10. | Little Whiteoak Bayou drainage basin | 66 | | | 11. | Brays Bayou drainage basin | 73 | | | 12. | Keegans Bayou drainage basin | 79 | | | 13. | Hummingbird Street Ditch drainage basin | 89 | | | 14. | Sims Bayou drainage basin | 100 | | | 15. | Berry Bayou drainage basin | 116 | | | 16. | Vince Bayou drainage basin | 123 | | | 17. | Hunting Bayou drainage basin | 128 | | | 18. | Greens Bayou drainage basin | 139 | | | 19. | Halls Bayou drainage basin | 152 | | | | | | | | | TABLES | | | Table | 1. | Percent increases in urbanization in various drainage | | | | _ • | areas above stream-gaging stations in the Houston | | | | | metropolitan area from 1969 to 1976 | 4 | | | 2. | Weighted-mean precipitation factors for drainage | | | | | basins above stations in the Houston metropolitan | | | | | area | 7 | | 3-18 | 8. | Storm rainfall-runoff data, 1984 water year,: | | | | 3. | Bettina Street Ditch | 24 | | | 4. | Bingle Road Storm Sewer | 36 | | ! | 5. | Cole Creek | 40 | | | 6. | Brickhouse Gully | 45 | | | 7. | Lazybrook Street Storm Sewer | 52 | | | 8. | Whiteoak Bayou | 58 | | | 9. | Little Whiteoak Bayou | 67 | | | 0. | Brays Bayou | 74 | | | 1. | Keegans Bayou | 80 | | 13 | 2. | Hummingbird Street Ditch | 90 | # TABLES--Continued | | | | Page | |--------|-----|--|------| | Tables | | Storm rainfall-runoff data, 1984 water year,:Continued | | | | | Sims Bayou | | | | 14. | Berry Bayou | 117 | | | 15. | Vince Bayou | 124 | | | 16. | Hunting Bayou | 129 | | | 17. | Greens Bayou | 140 | | | 18. | Halls Bayou | 153 | | | | Recording and nonrecording rain gages in the Houston | | | | - | area at sites other than stream-gaging stations | 164 | # METRIC CONVERSIONS For those readers interested in using the metric system, the inch-pound units of measurements used in this report may be converted to metric units by using the following conversion factors: | From | n | | To obtain | | | |--------------------------|--------------------|----------------|------------------------|-------------------|--| | Unit | Abbrevia-
tion | Multiply
by | Unit | Abbrevia-
tion | | | inch | in. | 25.4 | millimeter | mm | | | foot | ft | 0.3048 | meter | m | | | mile | mi | 1.609 | kilometer | km | | | square mile | mi ² | 2.590 | square kilometer | km^2 | | | cubic foot
per second | ft ³ /s | 0.02832 | cubic meter per second | m ³ /s | | | foot per mile | ft/mi | 0.189 | meter per kilometer | m/k m | | | acre-foot | | 1233 | cubic meter | _m 3 | | | | , | 0.001233 | cubic hectometer | hm 3 | | # HYDROLOGIC DATA FOR URBAN STUDIES IN THE HOUSTON METROPOLITAN AREA, TEXAS, 1984 Ву Fred Liscum, J. B. Bruchmiller, D. W. Brown, and E. M. Paul #### INTRODUCTION Hydrologic investigations of urban watersheds in Texas were begun by the U.S. Geological Survey in 1954. Studies are now in progress in the Austin and Houston areas, and have been completed in the Dallas-Fort Worth and San Antonio areas. The U.S. Geological Survey, in cooperation with the city of Houston, began studies in the Houston metropolitan area in 1964. The program was expanded in 1968 to include collection of water-quality data. The objectives of the Houston urban-hydrology study are as follows: - 1. To determine, on the basis of historical data and hydrologic analyses, the magnitude and frequency of flood peaks and flood volumes; - To determine the effect of urban development on flood peaks and volumes; and - To ascertain the variation in water quality for different flow conditions and different seasons. This report, the twenty-first and last scheduled in a series of reports published annually, is primarily applicable to objective 2. The report presents hydrologic data collected in
the Houston urban area for the 1984 water year (October 1, 1983 to September 30, 1984). A report by Johnson and Sayre (1973) utilized records collected from 1965 to 1969 to study the effects of urbanization on floods in the Houston area. That report also summarized various basin parameters. A report by Waddell, Massey, and Jennings (1979) presented data on runoff from the Houston area and computed concentrations and loads of selected water-quality constituents discharged to Galveston Bay. The study utilized a variation of the "STORM" model developed by the Hydrologic Engineering Center of the U.S. Army Corps of Engineers. A report prepared by Liscum and Massey (1980) presented a technique for estimating the magnitude and frequency of floods in the Houston area from drainage areas, bank-full conveyance. and percentage of urban development. A definition of terms related to streamflow, water quality, and other hydrologic data, as used in this report, are defined in "U.S. Geological Survey, Water-resources data for Texas, water year 1984, volume 2." #### LOCATION AND DESCRIPTION OF THE AREA The Houston study area, which is located about 45 miles from the Gulf of Mexico, is on an almost level plain. The land surface in the area increases in altitude from 35 feet above the National Geodetic Vertical Datum of 1929 (NGVD) in the southeast to 135 feet in the northwest. Soils in the area are predominately clay, clay loams, and fine sandy loams of low permeability. Records show that the entire Houston urban study area is being developed rapidly. Percent increases in urbanization in various drainage-basin areas in the Houston metropolitan area from 1969 to 1976 are given in table 1. The major stream draining the area is Buffalo Bayou, a tributary of the San Jacinto River. Buffalo Bayou is regulated by the Barker and the Addicks flood-detention reservoirs near the western limits of the area. From these reservoirs, Buffalo Bayou meanders east and is fed by five major tributaries: Whiteoak, Brays, Sims, Hunting, and Greens Bayous. The drainage area of Buffalo Bayou, excluding the area above the flood-detention reservoirs, is about 810 square miles. The climate of the Houston area is characterized by short mild winters, long hot summers, high relative humidity, and prevailing southeasterly winds. The mean annual temperature (1941-70) is $68.9^{\circ}F$ (20.5°C); the lowest temperature recorded was $5^{\circ}F$ (-15°C) in 1930; and the maximum recorded was $108^{\circ}F$ (42°C) in 1909. The 30-year average (1941-70) annual rainfall for Houston is 48.19 inches, which is distributed uniformly throughout the year. The maximum annual rainfall was 72.86 inches in 1900; and the minimum was 17.66 inches in 1917. #### DATA-COLLECTION METHODS The location of hydrologic-instrument installations and water-quality sampling sites in the Houston urban study area are shown in figure 1. The location of hydrologic instruments and data-collection sites in the individual basins are shown in figures 4-19. # Precipitation Data All precipitation data measured in the study area is rainfall. Data are collected at 39 recording and 11 nonrecording rain gages located in the study area (fig. 1). Thirty-one of the nonrecording gages are maintained by the U.S. Geological Survey, and the other eight are operated by the National Weather Service. The eleven nonrecording rain gages are also operated by the National Weather Service. The gages are distributed throughout the drainage basins to measure total precipitation and to define rainfall intensities. Rainfall data are given in the section "Compilation of Data." Locations of recording and nonrecording rain gages at sites other than stream-yaging stations are given later in table 19. Precipitation at individual gages and weighted precipitation in each study basin is given in the section "Compilation of data." Daily and monthly rainfall amounts are also given in the section "Compilation of data." FIGURE I.- Location of data-collection sites in the Houston urban study area Table 1.--Percent increases in urbanization in various drainage areas above stream gaging stations in the Houston metropolitan area from 1969 to 1976 | Station
no. | Station name | Perce
draina
that is
1969 <u>a</u> / | Percent
increase | | |-------------------|--|---|---------------------|------| | 08074150 | Cole Creek at Diehl Road | 34.3 | 54.0 | 19.7 | | 08074200 | Brickhouse Gully at Clarblak
Street | 34.6 | 54.7 | 20.1 | | 08074250 | Brickhouse Gully at Costa Rica
Street | 61.0 | 77.5 | 16.5 | | 08074500 | Whiteoak Bayou at Houston | 45.2 | 57.7 | 12.5 | | 08074780 | Keegans Bayou at Keegan Road | 21.0 | 44.9 | 23.9 | | 08074800 | Keegans Bayou at Roark Road | 26.3 | 55.7 | 29.4 | | 08075000 | Brays Bayou at Houston | 44.6 | 64.4 | 19.8 | | 080 7 5400 | Sims Bayou at Hiram Clarke Street | 40.4 | 69.3 | 28.9 | | 08075500 | Sims Bayou at Houston | 50.2 | 73.7 | 23.5 | | 08075550 | Berry Bayou at Gilpin Street | 58.0 | 71.8 | 13.8 | | 08075650 | Berry Bayou at Forest Oaks Street | 72.9 | 85.3 | 12.4 | | 08075760 | Hunting Bayou at Falls Street | 95.9 | 98.9 | 3.0 | | 08075770 | Hunting Bayou at Interstate
Highway 610 | 83.3 | 95.0 | 11.7 | | 08075780 | Greens Bayou at Cutten Road | 24.4 | 47.2 | 22.8 | | 08076000 | Greens Bayou near Houston | 26.3 | 43.9 | 17.6 | | 08076200 | Halls Bayou at Deertrail Street | 30.4 | 52.8 | 22.4 | | 08076500 | Halls Bayou at Houston | 60.3 | 74.1 | 13.8 | a/ Johnson and Sayre, 1973. \overline{b} / Liscum and Massey, 1980. Weighted-mean precipitation factors for drainage basins in the Houston area are given in table 2. Weighted-mean precipitation for a study area is determined by the Thiessen method as described by Linsley, Kohler, and Paulhus (1949). All of the rain gages, recording and nonrecording, are used to compute the monthly and annual rainfall amounts. Only the functioning recording gages are used to compute storm rainfall amounts. For example, the monthly and annual weighted-mean precipitation for the drainage basin upstream from the Cole Creek at the Deinl Road gaging station could be computed as follows: Multiply the recorded precipitation at the rain gage at station 08074150 by 0.10; to that value add the recorded precipitation at the rain gage at station 08074145 multiplied by 0.15; to that value add the recorded precipitation at the rain gage at station 205R multiplied by 0.15; to that value add the recorded precipitation at the rain gage at station 21R multiplied by 0.45. Rainfall for the current year was unevenly distributed over the area. Individual station totals ranged from 22.62 inches at the U.S. Geological Survey streamflow station, Greens Bayou at U.S. Highway 59 (station 08076000) in northeast Houston to 44.16 inches at the U.S. Geological Survey rain gage at Lafferty Street in Pasadena (station 405R) which borders southeast Houston. Figure 2 shows the comparison of accumulated monthly rainfall for the 1984 water year for five widely separated drainage basins with the 30-year rainfall average (1941-70) of 48.19 inches for Houston. Rainfall in the months of October, and March through July was considerably less than the 30-year average for all basins. Rainfall greatly exceeded the 30-year average only in the month of August in the Vince Bayou and Upper Sims Bayou basins. As figure 2 illustrates, total rainfall for the 1984 water year approached that of the 30-year average only in the Vince Bayou basin. The deficiency in rainfall during the 1984 water year is further emphasized by noting that actual rainfall for these five basins ranged from 4.41 inches less to 18.63 inches less than the 30-year average of 48.19 inches. Nineteen storms during the 1984 water year produced rainfall totals in excess of 2.0 inches. Thirteen of these storms were confined to only a few drainage basins and the remaining six produced significant rainfall over most of the metropolitan area. The most significant storms, in terms of total rainfall and areal coverage were on January 8-9, May 18-20, and June 6-8. The storms of July 18 and August 12 produced significant daily rainfalls over smaller areas. The storm of January 8-9 produced rainfall ranging from about 2.9 inches in the Halls Bayou drainage basin in north Houston to about 0.2 inch in the upper part of the Sims Bayou drainage basin in south Houston. Most of the rainfall occurred on January 9. The storm of May 18--20 produced rainfall ranging from about 3.2 inches in the vicinity of Barker Reservoir in west Houston to about 1.0 inch in the Hunting Bayou drainage basin of east Houston. Most of the rainfall occurred late on May 18 and early on May 19. Figure 2.-Rainfall at five drainage basins in the Houston metropolitan area, 1984 water year Table 2.--Weighted-mean precipitation factors for drainage basins above stations in the Houston metropolitan area | | to compute
yearly | factors used
monthly and
totals | ************************************** | compute | factors used to storm totals | |--|----------------------|---|---|----------------------------------|---| | Station number
and name | Rain gage | Weighted-mean
precipitation
factors | Date of
storm | Rain gaye | Weighted-mean
precipitation
factors | | | <u>1</u> / | <u>2</u> / | | <u>1</u> / | <u>2</u> / | | 08073630
Bettina Street
Ditch at Houston | Not computed | | Mar. 23-24, 1984 | 08073630 | 1.00 | | 08074145
Bingle Road
Storm Sewer at
Houston | Not computed | | July 5, 1984 | 08074145 | 1.00 | | 08074150 | 08074150 | .10 | July 18-20, 1984 | 08074150 | .10 | | Cole Creek at | 08074145 | .15 | | 08074145 | .20 | | Deihl Road, | 205R | .15 | · |
205R | .15 | | Houston | 23S
21R | .15
.45 | | 21R | . 55 | | 08074200
Brickhouse
Gully at
Clarblak
Street,
Houston | Not computed | | July 18-19, 1984 | 08074200
21k | .30
.70 | | 08074250 | 08074250 | .10 | July 18-20, 1984 | 08074250 | .15 | | Brickhouse | 08074200 | .30 | | 08074200 | .30 | | Gully at | 08074150 | .10 | | 08074150 | .10 | | Costa Rica | 205R
24 S | .25
.10 | | 205R
21R | .30
.15 | | Street,
Houston | 243
21R | .15 | | ZIK | •13 | | 08074400
Lazybrook Street
Storm Sewer at | Not computed | | Mar. 23, 1984
July 5, 1984
Aug. 5, 1984 | 08074400
08074400
08074400 | 1.00
1.00
1.00 | | Houston | | | nuy. J, 1704 | | 1.00 | See footnotes at end of table. Table 2.--Weighted-mean precipitation factors for drainage basins above stations in the Houston metropolitan area--Continued | | Gages and factors used to compute monthly and yearly totals | | | Gages and factors used to compute storm totals | | |---|---|---|------------------|--|---| | Station number and name | Rain gage | Weighted-mean
precipitation
factors | Date of
storm | Rain gage | Weighted-mean
precipitation
factors | | | 1/ | <u>2</u> / | | <u>1</u> / | <u>2</u> / | | 08074500 | 08074400 | 0.05 | Mar. 23-25, 1984 | 08074400 | 0.15 | | Whiteoak Bayou | 08074250 | .10 | | 08074250 | .10 | | at Houston | 08074200 | .05 | | 08074200 | .05 | | | 08074150 | .05 | | 08074150 | .05 | | | 08074145 | .05 | | 08074145 | .05 | | | 205R | .05 | | 205R | .05 | | | 204R | .10 | | 204R | .20 | | | 24S | .05 | | 22R | .20 | | | 23S
22R | .25
.15 | | 21R | .15 | | | 21R
10S | .05
.05 | | | | | | | | June 6-8, 1984 | U8074 4 00 | .15 | | | | | | 08074250 | .10 | | | | | | 08074200 | .05 | | | | | | 08074150 | .05 | | | | | | 08074145 | .05 | | | | | | 205R | .05 | | | | | | 204R | .20 | | | | | | 22R | .20 | | | | | | 21R | .15 | | 08074540 | Not computed | | Jan. 9-10, 1984 | 08076500 | .20 | | Little Whiteoak | | | | 08076200 | .25 | | Bayou at | | | | 08074540 | . 35 | | Trimble St.,
Houston | | | | 08074400 | .20 | | 08074760 | Not computed | | June 6-8, 1984 | 08074760 | .55 | | Brays Bayou
at Alief | | | | 33R | .45 | | 08074780
Keegans Bayou
at Keegan
Road, Houston | Not computed | | July 18-21, 1984 | U8 074780 | 1.00 | See footnotes at end of table. Table 2.--Weighted-mean precipitation factors for drainage basins above stations in the Houston metropolitan area--Continued | | Gages and factors used to compute monthly and yearly totals | | | | Gages and factors used to compute storm totals | | |---|---|---|------------------|-----------------|--|---| | Station number and name | Rain gage | Weighted-mean
precipitation
factors | Date of
storm | | Rain gage | Weighted-mear
precipitation
factors | | | <u>1</u> / | <u>2</u> / | | | <u>1</u> / | <u>2/</u> | | 08074800 | 08074800 | 0.10 | June | 6-10, 1984 | 08074800 | 0.10 | | Keegans Bayou
at Roark Road,
Houston | 08074780
34 S | .65
.25 | | | 08074780 | .90 | | 08074810 | Not computed | | Nov. | 30-Dec. 2, 1983 | 08074910 | .05 | | Brays Bayou | | | | | 08074780 | . 30 | | at Gessner | | | | | 08074760 | .25 | | Drive,
Houston | | | | | 3.3R
32R | .10
.25 | | | | | | | 32K
31K | .05 | | 08074910
Hummingbird
Street Ditch
at Houston | Not computed | | Nov. | 30, 1983 | 08074910 | 1.00 | | 08075000 | 08074910 | .10 | Jan. | 8-11, 1984 | 08074800 | 0.25 | | Brays Bayou at | 08074800 | .15 | | | 08074780 | .10 | | Houston | 08074780 | .10 | | | 08074760 | .15 | | • | 08074760 | .10 | | | 308R | .20 | | | 308R | .05 | | | 32R | .25 | | | 35S
34S | .20
.10 | | | 31R | .05 | | | 343
33R | .05 | Mar | 23-25, 1984 | 08074910 | .25 | | | 32R | .10 | nar . | 23-23, 1304 | 08074800 | .15 | | | 31R | .05 | | | 08074780 | .10 | | | | • | | | 08074760 | .15 | | | | | | | 3 08R | .10 | | | | | | | 3 3 R | .05 | | | | | | | 32R | .20 | | 08075400 | 08075400 | .60 | Jan. | 8-10, 1984 | 08075400 | .60 | | Sims Bayou at
Hiram Clarke | 31R | .40 | | - | 31R | .40 | | Street, | | | Aug. | 12-13, 1984 | 08075400 | .60 | | Houston | | | _ | ÷ | 31R | .40 | See footnotes at end of table. Table 2.--Weighted-mean precipitation factors for drainage basins above stations in the Houston metropolitan area--Continued | | Gages and factors used
to compute monthly and
yearly totals | | | | | factors used to storm totals | |---|---|--|------|------------------|---|-------------------------------------| | Station number and name | Rain gage | Weighted-mean precipitation factors 2/ | | Date of
storm | Rain gage | Weighted-mean precipitation factors | | 08075470
Sims Bayou at
Martin Luther
King Blvd.,
Houston | Not computed | | Jan. | 9-11, 1984 | 08075470
08075400
308R
31R | 0.25
.55
.05
.15 | | 08075500
Sims Bayou at
Houston | 08075500
08075470
08075400
305R
42S
31R | .05
.20
.35
.25
.05 | Jan. | 8-12, 1984 | 08075500
08075470
08075400
308R
31R | .05
.35
.40
.05 | | 08075550
Berry Bayou
at Gilpin
Street,
Houston | Not computed | | Aug. | 12-13, 1984 | 08075550 | 1.00 | | 08075650
Berry Bayou
at Forest
Oaks Street,
Houston | Not computed | | Aug. | 12-13, 1984 | 08075550
08075725 | .85
.15 | | 08075730
Vince Bayou
at Pasadena | 08075650
405R | .10
.90 | Aug. | 12-13, 1984 | 08075725 | 1.00 | | 08075760
Hunting Bayou
at Falls
Street,
Houston | Not computed | | Jan. | 9-10, 1984 | 08075760 | 1.00 | | 08075770
Hunting Bayou
at Interstate
Highway 610,
Houston | 08075770
08075760 | .20
.80 | Jan. | 9-12, 1984 | 08 076500
08 075760 | .10
.90 | | See footnotes at | end of table. | | 1.0 | | | | Table 2.--Weighted-mean precipitation factors for drainage basins above stations in the Houston metropolitan area--Continued | | to compute
yearly | factors used monthly and totals | | compute | Gages and factors used to compute storm totals | | | |---|-------------------------------------|--|---------------------|----------------------|---|--|--| | Station number and name | Rain gage | Weighted-mean precipitation factors 2/ | Date of
storm | Rain gage | Weighted-mean
precipitation
factors
2/ | | | | | | | | | - | | | | 08075780
Greens Bayou
at Cutten
Road near
Houston | Not computed | | Jan. 9-11, 1984 | 08075780 | 1.00 | | | | 08075900 | 08075900 | .40 | Jan. 9-11, 1984 | 08075900 | 0.40 | | | | Greens Bayou at U.S. High- | 08075780
204R | .55
.05 | · | 08075780 | .60 | | | | way 75,
Houston | | | Feb. 12-14, 1984 | 08075900
08075780 | .40
.60 | | | | 08076000 | 08076000 | .15 | Jan. 9-12, 1984 | U80 762 0U | .10 | | | | Greens Bayou | 08075900 | .45 | | 080759 00 | .40 | | | | near Houston | 08075780
20R | .30
.10 | | 08075780
20k | .30
.20 | | | | | ZUK | .10 | | ZUK | .20 | | | | 08076200 | Not computed | | Jan. 9-10, 1984 | 08076200 | .85 | | | | Halls Bayou | | | | 08075900 | .05 | | | | at Deertrail
Street near | | | | 08075780 | .10 | | | | Houston | | | Feb. 12-13, 1984 | 08076200 | .85 | | | | | | | | 08075900 | .05 | | | | | | | | 08075780 | .10 | | | | 08076500
Halls Bayou
at Houston | 08076500
08076000
204R
13S | .40
.05
.25
.30 | No storms published | | | | | | 08076700 | Not computed | •= | Jan. 9-12, 1984 | 08076500 | . 35 | | | | Greens Bayou | | | | 08076200 | .10 | | | | at Ley Road, | | | | 08075900
08075780 | .15
.10 | | | | Houston | | | | 080/5/80
20R | .10 | | | See table 19 for locations of stations other than stream-yaging stations. See section on "Precipitation Data" for explanation of use of weighted-mean precipitation factors. The storm of June 6-8 produced rainfall ranging from about 2.3 inches in the Whiteoak Bayou drainage basin of northwest Houston to about 0.2 inch in the Hunting Bayou drainage basin of east Houston. Most of the rainfall occurred on June 6. The storm of July 18 produced rainfall totals in excess of 2.6 inches at several sites in both northwest and southeast Houston. The storm of August 12 produced rainfall ranging from 4.20 inches to 1.92 inches for south and southeast Houston. However, neither of these storms produced significant rainfall outside of these general areas. The storms of January 8-9, June 6-8, July 18, and August 12 were analyzed for streamflow stations in the study area based on the total rainfall produced by the storm, the quality of the recorded data, and the significance of the runoff resulting from the storm. No analysis was made for the storm of May 18-20 because very little runoff resulted due to the extremely dry antecedent moisture conditions. Other storms were selected for analysis based on discharge, total rainfall, quality of recorded data, distribution of rainfall, and availability of water-quality data. ## Runoff Data Runoff data are based on discharge measurements and stage records at 15 continuous-record
stream-gaging stations, and 15 flood-hydrograph partial-record stations (fig. 1). Stage hydrograph data are available from seven stage-only stations. Annual records of either daily discharge or maximum gage height at continuous-record stream-gaging stations, and maximum discharge at flood-hydrograph partial-record stations are given in the section "Compilation of data." Tables of storm runoff data, including accumulated rainfall totals, are also given for selected storms in the section "Compilation of data." Figure 3 shows the accumulated monthly runoff from six basins for the 1984 water year and the average runoff for the period 1953-70. The average annual rainfall for the 1953-70 period was 46 inches or approximately equal to the 30-year (1941-70) rainfall average of 48.19 inches at Houston. Figure 3 shows that runoff for the 1984 water year for only two of the six drainage basins, Brays Bayou and Sims Bayou, is appreciably greater than the average runoff for the period 1953-70. Runoff for the 1984 water year is slightly less than the average runoff for the period 1953-70 at two drainage basins, Halls Bayou and Buffalo Bayou. Below normal runoff is attributed to low rainfall during the 1984 water year compared to the 46-inch average during 1953-70. Note that the high ratio of runoff to rainfall exhibited by comparison of the average period of 1953-70 with the 1984 water year is one of the effects of the continual urban development in the metropolitan area--not only increased storm runoff due to increased impervious area but also increased low flow sustained by sewage treatment plant releases. The most significant runoff-producing storms of the 1984 water year were those of January 8-9, June 6-8, July 18, and August 12. These four storms produced the annual water year peak runoff at 26 of the 33 streamflow stations Figure 3.—Runoff from six drainage basins in the Houston metropolitan area, 1984 water year, and average runoff for the period 1953-70 included in this report. Data published in the section "Compilation of data" show that computed storm runoff for the storm of January 8-9 ranged from 0.5 to 1.6 inches. This storm was the most significant event of the water year as it produced the annual water year peak at 13 of the 33 streamflow stations. The storm of June 6-8 produced runoff from 0.4 to 0.6 inches. The annual water year peak at three stations resulted from this storm. The storm of July 18 produced runoff ranging from 0.5 to 0.9 inches. This storm produced the annual water year peak at seven stations. The storm of August 12 produced runoff room 0.6 to 1.6 inches. This storm produced the annual water year peak at three stations. The ratio of runoff to rainfall was determined for all storms included in the section "Compilation of data." The ratio ranged from 0.30 to 0.72 for the storm of January 8-9. These values were distributed as follows: Less than 0.4, 3 sites; between 0.4 and 0.6, 4 sites; greater than 0.6, 4 sites. The ratio ranged from 0.28 to 0.39 for the storm of June 6 to 8; 0.29 to 0.44 for the storm of July 18; and 0.23 to 0.51 for the storm of August 12. A high ratio of runoff to rainfall may result from saturated soil moisture conditions, high-intensity rainfall, and long-duration rainfall in conjunction with highly developed drainage basins which include a large portion of impervious land cover and efficient storm drainage systems. However, caution is urged in the use of these computed values as the accuracies of the ratios may be adversely effected by inadequate rain-gage coverge, indeterminate drainage-area boundaries, basin exchange, and indefinite stage-discharge relationships. Values for total storm runoff, storm peak discharge, ratio of runoff to rainfall, and other pertinent data for all storms analyzed in the 1984 water year are given in tables 3 to 18. A total of 9 storms have been analyzed for the 1984 water year resulting in a total of 34 separate storm-data listings. The storm rainfall dates and the number of stream-gaging stations, for which data are published, are in the section "Compilation of data." | No. | Storm rainfall
date | Number of stations for which data are published | |-----|------------------------|---| | 1 | November 30 | 2 | | 2 | January 8-9 | 12 | | 3 | February 12-13 | 2 | | 4 | March 23-24 | 4 | | 5 | June 6-8 | 3 | | 6 | July 5 | 2 | | 7 | July 18 | 4 | | 8 | August 5 | 1 | | 9 | August 12 | 4 | # Water-Quality Data Water-quality data were collected at 15 locations in the study area during the 1984 water year. The locations of the water-quality data collection sites are shown on figure 1. Water-quality data and streamflow data are presented in downstream order in the section "Compilation of data." Water-quality data are collected from a wide range of discharge representing various flow and seasonal conditions, and include determinations for physical, chemical, and biological parameters. Physical analyses include measurements of temperature, pH, turbidity, suspended and volatile solids, and color. Chemical analyses include specific conductance, dissolved oxygen, standard inorganic chemical (major ions), and selected nutrients including total organic carbon, nitrogen, and phosphorus. Chemical analyses of trace substances include minor elements, and pesticides. Biological analyses include measurements of BOD (biochemical oxygen demand) and bacteriological analyses for total coliform, fecal coliform, and fecal streptococci. Water samples were also collected during selected storms to determine the quality of storm runoff in the Houston metropolitan area. Storm dates and stations where at least three water-quality samples were collected during the storms are: | Station no. | Station name | Date of storm | |-------------|--|--| | 0807 36 30 | Bettina Street Ditch at Houston, Tex. | March 23-24, 1984 | | 08074400 | Lazybrook Street Storm Sewer at Houston,
Tex. | March 23, 1984
July 5, 1984
Aug. 5, 1984 | | 08074500 | Whiteoak Bayou at Houston, Tex. | March 23-25, 1984 | | 08075000 | Brays Bayou at Houston, Tex. | March 23-25, 1984 | | 08075500 | Sims Bayou at Houston, Tex. | Aug. 12-13, 1984 | #### SELECTED REFERENCES - Johnson, S. L., and Sayre, D. M., 1973, Effects of urbanization on floods in the Houston, Texas, metropolitan area: U.S. Geological Survey Water-Resources Investigations 3-73, 50 p. - Linsley, R. K., Kohler, M. A., and Paulhus, J. L. H., 1949, Applied hydrology: New York, McGraw-Hill Book Company, Inc., 689 p. - Liscum, Fred, and Massey, B. C., 1980, Technique for estimating the magnitude and frequency of floods in the Houston, Texas, metropolitan area: U.S. Geological Survey Water-Resources Investigations 80-17, 40 p. - U.S. Department of Commerce, 1973, Climatography of the United States No. 81 (by State), Monthly normals of temperature, precipitation, and heating and cooling degree days, 1941-70, Texas: National Oceanic and Atmospheric Administration Environmental Data Service, U.S. Department of Commerce publication. - U.S. Geological Survey, 1985, Water resources data for Texas, water year 1984, volume 2: U.S. Geological Survey Water-Data Report, TX-84-2, 427 p. - Waddell, Kidd M., Massey, Bernard C., and Jennings, Marshall E., 1979, Use of the STORM model for estimating the quantity and quality of runoff from the metropolitan area of Houston, Texas: U.S. Geological Survey Water Resources Investigations 79-74, 29 p. COMPILATION OF DATA #### 08073500 BUFFALO BAYOU NEAR ADDICKS, TX LOCATION.--Lat 29°45'42", long 95°36'20", Harris County, Hydrologic Unit 12040104, near right bank at bridge on Dairy-Ashford Road over rectified channel, 1.8 mi downstream from South Mayde Creek, and 2.6 mi southeast of Addicks. DRAINAGE AREA. -- 293 mi2, unadjusted for basin boundary changes. PERIOD OF RECORD.--August 1945 to current year. Water-quality records.--Chemical, biochemical, and pesticide analyses: August 1970 to September 1982. REVISED RECORDS. -- WSP 1922: Drainage area. GAGE..-Water-stage recorder and crest-stage gages. Datum of gage is 1.40 ft below National Geodetic Vertical Datum of 1929, 1973 adjustment; records unadjusted to land-surface subsidence. Prior to Feb. 2, 1948, water-stage recorder at bridge on natural channel 1,200 ft to right at same datum. Feb. 2 to May 21, 1948, nonrecording gage at present site and datum. REMARKS.--Records fair. Floodflow regulated by Barker and Addicks Reservoirs (stations 08072500 and 08073000) 3.2 and 3.0 mi upstream, respectively (total capacity 315,900 acre-ft). Extreme low flow is sustained by drainage from irrigated lands. AVERAGE DISCHARGE. -- 39 years, 212 ft3/8 (153,600 acre-ft/yr). EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 11,200 ft³/s Aug. 29, 1945 (gage height, 81.23 ft), former site; no flow at times. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1896, 85.6 ft in December 1935, adjusted to former site from floodmark 0.5 mi downstream, on basis of slope of flood of Aug. 29, 1945, from information by local resident. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,400 ft³/s Oct. 1 at 0030 hours (gage height, 61.61 ft); minimum daily, 23 ft³/s May 10. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 | | | | • | | ME | AN VALUES | | | | | | | |----------------------------------|----------------------------------|----------------------------|----------------------------------|------------------------------------|-------------------------|----------------------------------|----------------------------|-----------------------------------|----------------------------|--|----------------------------------|----------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 1390 | 35 | 35 | 37 | 45 | 63 | 28 | 50 |
41 | 295 | 185 | 52 | | 2 | 1340 | 35 | 35 | 35 | 48 | 56 | 30 | 52 | 42 | 376 | 122 | 116 | | 3 | 1270 | 30 | 63 | 33 | 53 | 53 | 35 | 57 | 43 | 417 | 212 | 113 | | 4 | 1130 | 45 | 193 | 35 | 53 | 51 | 36 | 45 | 42 | 293 | 227 | 105 | | 5 | 501 | 60 | 224 | 33 | 43 | 60 | 33 | 37 | 45 | 149 | 180 | 80 | | 6 | 55 | 300 | 140 | 33 | 37 | 56 | 30 | 31 | 213 | 74 | 303 | 65 | | 7 | 48 | 420 | 59 | 31 | 35 | 48 | 31 | 31 | 426 | 169 | 362 | 70 | | 8 | 44 | 180 | 46 | 31 | 31 | 45 | 61 | 30 | 476 | 65 | 317 | 65 | | 9 | 39 | 90 | 40 | 196 | 56 | 43 | 77 | 24 | 147 | 297 | 116 | 55 | | 10 | 40 | 60 | 39 | 319 | 63 | 42 | 44 | 23 | 162 | 292 | 75 | 47 | | 11 | 37 | 50 | 83 | 331 | 51 | 42 | 33 | 24 | 75 | 94 | 56 | 42 | | 12 | 38 | 40 | 117 | 112 | 530 | 55 | 28 | 25 | 66 | 45 | 57 | 40 | | 13 | 39 | 40 | 113 | 43 | 465 | 212 | 27 | 26 | 60 | 40 | 167 | 38 | | 14 | 37 | 35 | 59 | 38 | 364 | 245 | 27 | 25 | 50 | 53 | 185 | 36 | | 15 | 34 | 35 | 44 | 36 | 136 | 123 | 28 | 27 | 40 | 50 | 144 | 38 | | 16 | 40 | 30 | 56 | 36 | 77 | 49 | 30 | 27 | 35 | 43 | 74 | 135 | | 17 | 82 | 30 | 48 | 34 | 58 | 43 | 32 | 27 | 32 | 40 | 60 | 59 | | 18 | 66 | 35 | 42 | 32 | 48 | 38 | 34 | 200 | 30 | 286 | 43 | 34 | | 19 | 51 | 40 | 36 | 31 | 42 | 52 | 36 | 479 | 30 | 365 | 33 | 30 | | 20 | 45 | 40 | 33 | 29 | 331 | 61 | 39 | 528 | 32 | 292 | 132 | 28 | | 21 | 41 | 45 | 33 | 30 | 651 | 47 | 39 | 413 | 34 | 163 | 51 | 108 | | 22 | 45 | 40 | 32 | 33 | 736 | 39 | 40 | 324 | 32 | 190 | 38 | 410 | | 23 | 41 | 70 | 32 | 327 | 733 | 121 | 41 | 707 | 31 | 218 | 39 | 479 | | 24 | 40 | 180 | 33 | 533 | 692 | 219 | 41 | 539 | 32 | 156 | 40 | 222 | | 25 | 33 | 100 | 35 | 459 | 577 | 109 | 47 | 360 | 34 | 189 | 117 | 62 | | 26
27
28
29
30
31 | 29
29
29
32
28
29 | 50
40
42
40
35 | 41
48
46
39
35
36 | 210
110
72
53
50
46 | 340
258
156
83 | 52
40
34
31
30
30 | 50
55
56
55
46 | 274
93
86
51
44
41 | 58
36
32
31
46 | 149
131
376
532
430
320 | 87
53
48
48
46
47 | 46
38
37
33
32 | | TOTAL | 6702 | 2272 | 1915 | 3428 | 6792 | 2189 | 1189 | 4700 | 2453 | 6589 | 3664 | 2715 | | MEAN | 216 | 75.7 | 61.8 | 111 | 234 | 70.6 | 39.6 | 152 | 81.8 | 213 | 118 | 90.5 | | MAX | 1390 | 420 | 224 | 533 | 736 | 245 | 77 | 707 | 476 | 532 | 362 | 479 | | MIN | 28 | 30 | 32 | 29 | 31 | 30 | 27 | 23 | 30 | 40 | 33 | 28 | | AC-FT | 13290 | 4510 | 3800 | 6800 | 13470 | 4340 | 2360 | 9320 | 4870 | 13070 | 7270 | 5390 | NOTE. -- No gage-height record Nov. 1-30. 44608 TOTAL 133184 TOTAL CAL YR 1983 WTR YR 1984 MEAN 365 MEAN 122 MIN 20 MIN 23 1580 1390 MAX AC-FT 264200 88480 AC-FT #### 08073600 BUFFALO BAYOU AT WEST BELT DRIVE, HOUSTON, TX LOCATION.--Lat 29°45'43", long 95°33'27", Harris County, Hydrologic Unit 12040104, at downstream side of bridge on west Belt Drive in west Houston, 100 ft downstream from Rummel Creek, 3.5 mi downstream from station 08073500, and 3.7 mi upstream from station 08073700. DRAINAGE AREA. -- 307 mi², unadjusted for basin boundary changes. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- September 1971 to current year. GAGE.--Water-stage recorders and crest-stage gage. Datum of gage is 0.67 ft below National Geodetic Vertical Datum of 1929, 1973 adjustment. Telemetry located at station. REMARKS.--Water-discharge records fair. Floodflow regulated by Barker and Addicks Reservoirs (stations 08072500 and 08073000) 10.1 and 10.3 mi upstream, respectively. Low flow is sustained by sewage effluent from Houston suburbs. AVERAGE DISCHARGE. -- 13 years, 315 ft 3/s (228,200 acre-ft/yr). EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,350 ft³/s Aug. 31, 1981 (gage height, 64.58 ft); minimum daily, 25 ft³/s Nov. 21, 1971. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,940 ft³/s July 18 at 2030 hours (gage height, 53.12 ft); minimum daily, 49 ft³/s May 10, 11. DISCHARGE. IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 | | | DISCHA | ARGE, I | W CODIC PE | 1 | MEAN VALUE | S | OCTOBER 13 | 6) 10 561 | TERDER 13 | .04 | | |----------------------------------|-------------------------------------|----------------------------------|---|-------------------------------------|-----------------------------------|--|--|---------------------------|----------------------------------|--|-----------------------------------|----------------------------------| | DAY | OCT | NOV | DEC | JAN | FŁB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1400
1360
1310
1190
692 | 73
67
63
79
91 | 59
58
98
199
241 | 61
60
56
60
59 | 86
94
104
95
86 | 90
84
84
83
109 | 68
71
74
74 | 64
66
65 | 64
65
64
63
66 | 309
414
463
346
233 | 213
137
297
485
299 | 78
231
141
125
91 | | 6
7
8
9 | 118
97
92
79
81 | 370
487
270
147
95 | 174
81
67
64
70 | 62
61
60
535
343 | 79
77
74
157
106 | 86
80
77
76
75 | 69
69
92
119
79 | 63
122
53 | 335
430
467
163
174 | 126
229
111
330
358 | 352
404
373
254
149 | 85
88
85
80
80 | | 11
12
13
14 | 76
77
81
74
68 | 80
72
69
68
65 | 109
153
154
84
65 | 442
203
91
84
84 | 92
654
501
422
195 | 75
105
284
296
187 | 62
58
55
54
52 | 50
51
50 | 83
77
69
70
71 | 199
89
76
99
88 | 114
124
241
270
236 | 79
78
76
78
112 | | 16
17
18
19
20 | 88
1 99
1 28
1 02
9 0 | 61
61
66
66
68 | 132
74
66
59
57 | 83
79
78
78
77 | 121
97
87
81
492 | 89
85
80
106
98 | 53
53
56
57
59 | 52
307
633 | 69
65
69
71
74 | 78
76
471
580
31 3 | 140
115
96
86
173 | 184
113
81
75
74 | | 21
22
23
24
25 | 93
94
80
74
64 | 74
64
127
238
160 | 62
54
53
53
53 | 77
80
490
603
541 | 649
700
701
670
594 | 84
79
194
352
161 | 56
54
56
56
61 | 252
636
519 | 68
64
61
63
66 | 186
199
234
510
426 | 107
78
78
83
159 | 247
496
540
334
116 | | 26
27
28
29
30
31 | 59
58
61
66
62
74 | 73
69
71
67
67 | 61
69
69
64
61
62 | 302
172
121
95
93
87 | 402
314
208
116 | 98
83
76
70
69
71 | 66
70
69
70
63 | 1 08
1 05
77 | 88
67
64
64
80 | 206
154
394
538
452
342 | 140
92
84
81
78
76 | 94
86
84
78
76 | | TOTAL MEAN MAX MIN AC-FT | 8187
264
1400
58
16240 | 3428
114
487
61
6800 | 2725
87.9
241
53
5410
MEAN | 5317
172
603
56
10550 | 8054
278
701
74
15980 | 3586
116
352
69
7110
MIN 43 | 1966
65.5
119
52
3900
AC-FT | 175
636
49
10750 | 3294
110
467
61
6530 | 8629
278
580
76
17120 | 5614
181
485
76
11140 | 4185
140
540
74
8300 | CAL YR 1983 TOTAL 154724 MEAN 424 MAX 2410 MIN 43 AC-FT 306900 WTR YR 1984 TOTAL 60407 MEAN 165 MAX 1400 MIN 49 AC-FT 119800 # 08073600 BUFFALO BAYOU AT WEST BELT DRIVE, HOUSTON, TX--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- Chemical and biochemical analyss: December 1978 to current year. PERIOD OF DAILY RECORD. --SPECIFIC CONDUCTANCE: June 1979 to September 1981. WATER TEMPERATURES: June 1979 to September 1981. EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 922 micromhos June 25, 1979; minimum daily, 78 micromhos Aug. 31, 1981. WATER TEMPERATURES (1979-80): Maximum daily, 30.5°C July 1, 1978; minimum daily, 8.5°C Jan. 23, 1981. #### WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 | DATE | TIME | FL
INS
TAN | EAM-
OW,
TAN-
EOUS | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS) | PH
(STA
AR
UNIT | ND- 1
D | TEMPER-
ATURE
(DEG C) | B:
I' | UR-
ID-
IY
IU) | D
SO | GEN,
IS-
LVED
G/L) | OXYG
DI
SOL
(PE
CE
SAT
ATI | S-
VED
R-
NT
UR- | OXYGEN
DEMAND
BIO-
CHEM-
ICAL,
5 DAY
(MG/L | , | COLI-
FORM,
FECAL,
0.7
UM-MF
COLS./
00 ML) | FEG
KF /
(CO) | REP-
OCCI
CAL,
AGAR
LS.
ER
ML) | HARD-
NESS
(MG/L
AS
CACO3) | |------------------|--|--------------------|---|---|----------------------------------|--|--|----------------------------|-------------------------------------|---------------------------------|--|--|--|--|---|--|------------------------------|--|--| | NOV
21
MAR | 1115 | | 77 | 840 | | 8.0 | 21.0 | 29 | , | | 8.0 | | 90 | 4. | 7 | K18 | | 320 | 140 | | 06 | 0834 | | 85 | 76 0 | | 7.6 | 15.5 | 50 | 5 | | 8.5 | | 85 | 1. | 2 | K14 | | 130 | 150 | | MAY
09
AUG
 0935 | | 48 | 831 | | 7.6 | 24.0 | 18 | 3 | | 6.2 | | 73 | 6. | 8 | К8 | | K1 | 140 | | 15 | 1000 | | 239 | 384 | | 7.2 | 26.5 | 170 |) | | 7.0 | | 86 | 1. | 7 | К4 | | K1 | 83 | | DATE | HAR
NES
NONC
BONA
(MG
CAC | SS,
CAR-
CTE | CALCI
DIS-
SOLV
(MG/
AS C | UM S | IS- | SODIUM
DIS-
SOLVEI
(MG/I
AS NA | 1, 80F
D T1
L RAT | ON | POT
SI
DI
SOL
(MG
AS | UM,
S-
Ved
/L | ALKA
LINI
FIE
(MG,
AS
CAC | TY
LD
/L | SULFA
DIS-
SOLV
(MG/
AS SO | TE R
ED S | HLO-
IDE,
IS-
OLVE
MG/L
S CL | (MG | E,
S-
VED
/L | SILIC
DIS-
SOLV
(MG/
AS
SIO2 | ED
L | | NOV 21 | • | 0 | 45 | ; | 7.7 | 120 | | 5 | 7 | . 2 | | 194 | 33 | 1 | 20 | | .40 | 19 | | | MAR
06 | | 0 | 45 | | 3.9 | 96 | | 4 | 7 | . 1 | | 190 | 27 | 1 | 10 | | .40 | 18 | | | MAY
09 | | 0 | 42 | ; | 7.9 | 110 | | 4 | 8 | . 0 | | 193 | 34 | . 1 | 10 | | .40 | 19 | | | AUG
15 | | 0 | 26 | | 4.3 | 42 | | 2 | 8 | . 5 | | 98 | 16 | i | 50 | | .30 | 12 | | | DATE | DI
SOL | DUE | SOLIE
SUM O
CONST
TUENT
DIS
SOLV
(MG/ | F GI
I - NO2-
S, DI
- SOI
ED (MO | IS-
LVED
G/L | NITRO
GEN,
AMMONI
DIS-
SOLVE
(MG/1
AS N) | GEN, IA MONI ORGA D TOTA (MO | IA +
ANIC
FAL
S/L | PHO
PHOR
TOT
(MG
AS | US,
AL
/L | PHOS
PHORI
DIS
SOL'
(MG, | US,
S-
VED
/L | PHOS
PHORU
ORTH
DIS-
SOLVE
(MG/I
AS P) | IS,
IO, S
ID S
ID P | EDI-
ENT,
US-
ENDE | D PEN | T,
S-
GE,
S-
Ded | SED
SUS
SIEV
DIA
% FIN
THA | P.
E
M.
Ek
N | | NOV
21 | | 476 | Δ. | 80 : | 3.5 | 1.40 |) / | . 7 | 2. | 50 | 2. | 40 | 2.0 | | 4: | 3 | 8.9 | | 98 | | MAR
06 | | 433 | | | 2.0 | <.01 | | 5.0 | 3. | | 3. | | • | 70 | 78 | | 8 | | 89 | | MAY
09 | | 471 | | | 2.6 | 4.30 | | 5.0 | 4. | | 4.0 | | 5.1 | | 1 | - | 2.2 | | 98 | | AUG
15 | | 219 | | | 1.3 | .86 | | 2.2 | 1. | | | 900 | 1.0 | | 9: | | 0 | | 98 | | ,,,,, | DATE | | | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | BARI
DIS
SOLV
(UG
AS | UM,
-
ED
/L | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE) | CADN
DI
SOI
(UC | IIUM
IS-
LVED
G/L
CD) | CHI
MII
DIS
SOI
(UC | RO-
UM, | COBAI
DIS
SOLVI
(UG, | LT,
-
ED
/L | COPPER
DIS-
SOLVE
(UG/L
AS CU | , : | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEA
Di
SOI
(UC | | | | | IOV
21
(AR | 1 | 115 | 3 | | 180 | .5 | | <1 | | <1 | | <3 | | 3 | 12 | | 2 | | | | 06
IAY | 0 | 834 | 3 | | 180 | <.5 | | <1 | | <1 | | <3 | | 5 | 48 | | 4 | | | | 09 | 0 | 935 | 4 | | 160 | <.5 | | <1 | | 1 | | <3 | | 8 | 17 | | <1 | | | | UG
15 | 1 | 00 0 | 3 | | 140 | 1 | | <1 | | <1 | | <3 | | 5 | 68 | | 1 | | ## 08073600 BUFFALO BAYOU AT WEST BELT DRIVE, HOUSTON, TX--Continued ## WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 | Date | LITHIUM
DIS-
SOLVED
(UG/L
AS LI) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY
DIS-
SOLVED
(UG/L
AS HG) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE) | SILVER,
DIS-
SOLVED
(UG/L
AS AG) | STRON-
TIUM,
DIS-
SOLVED
(UG/L
AS SR) | VANA-
DIUM,
DIS-
SOLVED
(UG/L
AS V) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | |-----------|--|--|--|---|--|---|--|--|--|--| | NOV | | | | | | | | | | | | 21 | 22 | 32 | <.1 | <10 | <1 | 1 | <1 | 560 | <6 | 10 | | MAR | 20 | 98 | | <10 | • | | | 450 | /6 | | | 06
May | 20 | 90 | <.1 | (10 | 2 | <1 | <1 | 450 | <6 | 17 | | 09 | 30 | 45 | <.1 | <10 | 5 | <1 | <1 | 470 | <6 | 24 | | AUG | | | | | | | | | | | | 15 | 10 | 3 | <.1 | <10 | 2 | <1 | <1 | 210 | <6 | 17 | ## BETTINA STREET DITCH DRAINAGE BASIN The locations of data-collection sites in the Bettina Street Ditch drainage basin are shown in figure 4. Weighted-mean rainfall for the 1984 water year was not determined. The storm of March 23-24 was selected for analysis at station 08073630, Bettina Street Ditch at Houston. Figure 4.-Locations of data-collection sites in and near Bettina Street Ditch drainage basin TX-35 Rev. 5/80 UNITED STATES DEPARTMENT OF THE INTIGRICAL SURVEY-TEXAS DISTRICT ANNUAL STORM RAINFALL-RUNOFF SUMMARY DATA Table 3.--Storm rainfall-runoff data, 1984 Water Year, Bettina Street Ditch | Date of Storm | 85%
Duration | Weighted | Rainfall
Maximum Incr | Rainfall (inches)
Maximum Increment Recorded in Basin | ed in Basin | Runoff | Ratio
runoff to | Maximum
discharge | |------------------|-----------------|------------|---|--|-------------|----------|--------------------|----------------------| | | (hours) | Total | 15-minute | 30-minute | 60-minute | (inches) | rainfall | (ft^3/s) | | | | Betti
(| Bettina Street Ditch at Houston, TX. (Drainage Area 1.37 mi. ²) | tch at Houston | 2) TX. | | | | | Mar. 23-24, 1984 | 0.8 | 1.75 | 09.0 | 1.14 | 1.54 | 0.54 | 0.31 | 210 | - | · | - | | | | · | | | | | | | | | | | # 08073630 BETTINA STREET DITCH AT KIMBERLY STREET AT HOUSTON, TX (Flood-hydrograph partial-record station) LOCATION.--Lat 29°46'32", long 95°32'23", Harris County, Hydrologic Unit 12040104, at intersection of Bettina Street ditch and Kimberly Street in west Houston. DRAINAGE AREA. -- 1.37 mi2. (Flow leaves basin above IH 10 during some large runoff events). #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- November 1978 to current year. GAGE,--Flood-hydrograph and rainfall recorder, automatic water-quality sampler, and crest-stage gage. Datum of gage is National Geodetic Vertical Datum of 1929. REMARKS.--Records fair. Additional storm rainfall-runoff data for this site can be obtained from the report "Hydrologic Data for Urbsn Studies in the Houston, Texas Metropolitan Area, 1984." EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 562 ft 3/s Aug. 31, 1981 (elevation, 81.69 ft). EXTREMES FOR CURRENT YEAR .-- Peak discharge above base of 300 ft 3/s and maximum (*): | Date | Time | Discharge
(ft³/s) | Elevation
(ft) | |---------|------|----------------------|-------------------| | July 18 | 1835 | 310 | 79.59 | | July 24 | 1420 | *341 | 79.96 | | Aug. 3 | 1855 | 330 | 79.83 | #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- Chemical, biochemical, and pesticide analyses: October 1981 to current year. #### WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 | DATE | T IME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS) | COLOR
(PLAT-
INUM-
COBALT
UNITS) | TUR-
BID-
ITY
(NTU) | OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) | HARD-
NESS
(MG/L
AS
CACO3) | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | |---|--|---|---|--|---|--|--|--|--|--| | DEC | | | | | | | | | | | | 16-16
FEB | 0650 | 16 | 264 | 30 | 22 | 22 | 58 | O | 19 | 2.5 | | 11-12 | | 35 | 180 | 70 | | | 52 | 0 | 18 | 1.8 | | 20-20
MAR | 0740 | 44 | 65 | 70 | 24 | 5.6 | | | | | | 19-19 | 0325 | 16 | 184 | 70 | 28 | | | | | | | 23 | 1920 | 5.8 | 261 | | | | | | | | | 23 | 1950 | 166 | 96 | . 5 | 17 | | | | | | | 23 | 2020 | 196 | | <1 | 34 | | | | | | | 23 | 2050 | 162 | 90 | | | | | | | | | 23 | 2120 | 116
71 | 70 | 5 | 25 | | | | | | | 23 | 2150 | /1 | 87 |) | 25 | | | | | | | | | | | | | | | | SOLIDS. | SOLIDS. | | DATE | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | SODIUM AD- SORP- TION RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
FIELD
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | RESIDUE
AT 105
DEG. C.
SUS-
PENDED
(MG/L) | | DATE
DEC | DIS-
SOLVED
(MG/L | AD-
SORP-
TION | SIUM,
DIS-
SOLVED
(MG/L | LINITY
FIELD
(MG/L
AS | DIS-
SOLVED
(MG/L | RIDE,
DIS-
SOLVED
(MG/L | RIDE,
DIS-
SOLVED
(MG/L | DIS-
SOLVED
(MG/L
AS | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED | RESIDUÉ
AT 105
DEG. C.
SUS-
PENDED | | | DIS-
SOLVED
(MG/L | AD-
SORP-
TION |
SIUM,
DIS-
SOLVED
(MG/L | LINITY
FIELD
(MG/L
AS | DIS-
SOLVED
(MG/L | RIDE,
DIS-
SOLVED
(MG/L | RIDE,
DIS-
SOLVED
(MG/L | DIS-
SOLVED
(MG/L
AS | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED | RESIDUÉ
AT 105
DEG. C.
SUS-
PENDED | | DEC
16-16
FEB
11-12 | DIS-
SOLVED
(MG/L
AS NA) | AD-
SORP-
TION
RATIO | SIUM,
DIS-
SOLVED
(MG/L
AS K) | LINITY
FIELD
(MG/L
AS
CACO3) | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | RESIDUÉ
AT 105
DEG. C.
SUS-
PENDED
(MG/L) | | DEC
16-16
FEB
11-12
20-20 | DIS-
SOLVED
(MG/L
AS NA) | AD-
SORP-
TION
RATIO | SIUM,
DIS-
SOLVED
(MG/L
AS K) | LINITY
FIELD
(MG/L
AS
CACO3) | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | RESIDUÉ
AT 105
DEG. C.
SUS-
PENDED
(MG/L) | | DEC
16-16
FEB
11-12
20-20
MAR | DIS-
SOLVED
(MG/L
AS NA) | AD-
SORP-
TION
RATIO | SIUM,
DIS-
SOLVED
(MG/L
AS K)
4.0
2.6 | LINITY
FIELD
(MG/L
AS
CACO3) | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | RESIDUÉ
AT 105
DEG. C.
SUS-
PENDED
(MG/L) | | DEC
16-16
FEB
11-12
20-20
MAR
19-19 | DIS-
SOLVED
(MG/L
AS NA) | AD-
SORP-
TION
RATIO | SIUM,
DIS-
SOLVED
(MG/L
AS K)
4.0
2.6 | LINITY FIELD (MG/L AS CACO3) 59 54 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | RES IDUÉ
AT 105
DEG. C.
SUS -
PENDED
(MG/L)
105
84
58 | | DEC
16-16
FEB
11-12
20-20
MAR
19-19
23 | DIS-
SOLVED
(MG/L
AS NA) | AD-
SORP-
TION
RATIO | SIUM,
DIS-
SOLVED
(MG/L
AS K) | LINITY
FIELD
(MG/L
AS
CACO3)
59
54
 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | RESIDUÉ
AT 105
DEG. C.
SUS-
PENDED
(MG/L)
105
84
58 | | DEC
16-16
FEB
11-12
20-20
MAR
19-19
23 | DIS-
SOLVED
(MG/L
AS NA) | AD-
SORP-
TION
RATIO | SIUM,
DIS-
SOLVED
(MG/L
AS K) | LINITY
FIELD
(MG/L
AS
CACO3) | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
31
14 | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | RESIDUÉ
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
105
84
58
153 | | DEC
16-16
FEB
11-12
20-20
MAR
19-19
23
23 | DIS-
SOLVED
(MG/L
AS NA) | AD-
SORP-
TION
RATIO | SIUM,
DIS-
SOLVED
(MG/L
AS K) | LINITY
FIELD
(MG/L
AS
CACO3)
59
54
 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | RESIDUÉ
AT 105
DEG. C.
SUS-
PENDED
(MG/L)
105
84
58
153

111
257 | | DEC
16-16
FEB
11-12
20-20
MAR
19-19
23
23
23 | DIS-
SOLVED
(MG/L
AS NA) | AD-
SORP-
TION
RATIO | SIUM,
DIS-
SOLVED
(MG/L
AS K) | LINITY
FIELD
(MG/L
AS
CACO3) | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
31
14 | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | RESIDUÉ
AT 105
DEG. C.
SUS-
PENDED
(MG/L)
105
84
58
153

111
257 | | DEC
16-16
FEB
11-12
20-20
MAR
19-19
23
23 | DIS-
SOLVED
(MG/L
AS NA) | AD-
SORP-
TION
RATIO | SIUM,
DIS-
SOLVED
(MG/L
AS K) | LINITY
FIELD
(MG/L
AS
CACO3) | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | RESIDUÉ
AT 105
DEG. C.
SUS-
PENDED
(MG/L)
105
84
58
153

111
257 | SAN JACINTO RIVER BASIN 08073630 BETTINA STREET DITCH AT KIMBERLY STREET AT HOUSTON TX--Continued #### WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 | DATE | SOLIDS,
VOLA-
TILE,
SUS-
PENDED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | PHOS-
PHORUS,
TOTAL
(MG/L
AS P) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C) | |-------|---|--|--|--|--|--|--|---|---| | DEC | | | | | | | | | | | 16-16 | 24 | .51 | .090 | .60 | .240 | 1.8 | 2.0 | 1.40 | 24 | | FEB | | | | | | | | | | | 11-12 | 33 | .18 | .020 | .20 | .090 | 1.5 | 1.6 | .540 | 20 | | 20-20 | 13 | . 38 | .020 | .40 | .080 | .62 | .70 | .240 | 10 | | MAR | | | | | | | | | | | 19-19 | 56 | | <.010 | <.10 | .040 | 3.2 | 3.2 | .740 | 33 | | 23 | | | | | | | | | | | 23 | 57 | 29 | . 01 0 | .30 | .140 | 2.1 | 2.2 | 1.50 | 13 | | 23 | 69 | . 39 | .010 | .40 | .360 | 1.9 | 2.3 | .510 | 12 | | 23 | | | | | | | | | | | 23 | | | | | | | | | | | 23 | 34 | .38 | .020 | .40 | .190 | 1.2 | 1.4 | .390 | 14 | # STORM RAINFALL AND RUNOF-FOBO73630 BETTINA STREET DITCH AT HOUSTON, TEX. | DATE | ACCUMU- | ACCUMU- | DISCHARGE | ACCUMU- | |---------|---|------------|----------------|------------------| | AND | LATED | LATED | DIOUTHING. | LATED | | TIME | RAIN- | WEIGHTED | | RUNOFF | | LINE | | | | KONOFF | | | | RAINFALL | | | | | AT | | (0) (0) 7.0 | | | | GAGE | | (CUBIC | | | | 3630 | | FEET | | | | | | PER | | | | (INCHES) | (INCHES) | SECOND) | (INCHES) | | | | | | | | | | | | | | | STORM | OF MAR. 23 | 3-24, 1984 | | | MAR. 23 | | | | | | 0000 | O. O | O. O | 1.0 | 0. 0.102 | | 1800 | O. O | 0. 0 | 1.0 | 0. 0209 | | 1900 | 0. 0 | 0. 0 | 1. 0 | 0. 0215 | | 1905 | 0. 04 | 0. 04 | 1. 0 | 0. 0216 | | 1910 | 0.08 | 0.08 | 1.0 | 0.0217 | | 1915 | 0.13 | 0.13 | 1. 0 | 0.0218 | | 1920 | 0. 31 | 0. 31 | 5. 8 | 0. 0216 | | 1925 | 0. 49 | 0. 49 | 38. Q | 0. 0259 | | | | | | | | 1930 | 0. 67 | 0. 67 | 81.0 | 0. 0336 | | 1935 | 0. 87 | 0. 87 | 106. 0 | 0. 0436 | | 1940 | 1. 07 | 1. 07 | 125. 0 | 0. 0554 | | 1945 | 1. 27 | 1. 27 | 142. 0 | 0. 0 687 | | 1950 | 1. 36 | 1.36 | 166. 0 | 0. 0844 | | 1955 | 1. 45 | 1.45 | 19 6. 0 | 0. 1029 | | 2000 | 1. 54 | 1.54 | 209 . 0 | 0. 1226 | | 2005 | 1.55 | 1.55 | 210.0 | 0. 1424 | | 2010 | 1. 56 | 1. 56 | 207. 0 | 0. 1619 | | 2015 | 1. 58 | 1.58 | 203. 0 | 0. 1810 | | 2020 | 1.61 | 1.61 | 196. 0 | 0. 1995 | | 2025 | 1.64 | 1. 64 | 187. 0 | 0. 2173 | | 2030 | 1. 68 | 1. 68 | 184. 0 | 0. 2346 | | 2035 | 1. 69 | 1.69 | 180. 0 | 0. 2516 | | 2040 | 1.70 | 1.70 | 176. O | 0. 2682 | | 2045 | 1.72 | 1. 72 | 170. 0 | 0. 2922 | | | | | | | | 2055 | 1.72 | 1. 72 | 155. 0 | 0. 3141 | | 2100 | 1.73 | 1. 73 | 148. 0 | 0. 3490 | | 2120 | 1. 73 | 1. 73 | 116. 0 | 0. 3873 | | 2135 | 1. 73 | 1. 73 | 93. 0 | 0. 4136 | | 2150 | 1. 73 | 1. 73 | 71. Q | 0. 43 03 | | 2200 | 1. 73 | 1. 73 | 5 7. 0 | 0. 4411 | | 2210 | 1. 73 | 1. 73 | 46. O | 0. 4 4 97 | | 2220 | 1. 73 | 1. 73 | 37 . 0 | 0. 4567 | | 2230 | 1.73 | 1. 73 | 30.0 | 0. 4624 | | 2240 | 1. 73 | 1. 73 | 24. 0 | 0. 4827 | | 2400 | 1. 73 | 1. 73 | 7. 4 | 0. 5134 | | MAR. 24 | | | | | | 0000 | 1. 73 | 1. 73 | 7. 4 | 0. 5134 | | 0600 | 1. 74 | 1. 74 | 1. 2 | 0. 5216 | | 1200 | 1. 75 | 1. 75 | 1. 1 | 0. 5328 | | 2400 | 1. 75 | 1. 75 | 1. 0 | 0. 5395 | | | - · · · · · · · · · · · · · · · · · · · | | | | #### 08073700 BUFFALO BAYOU AT PINEY POINT, TX LOCATION.--Lat 29°44'48", long 95°31'24", Harris County, Hydrologic Unit 12040104, on downstream side of bridge on Piney Point Road, village of Piney Point, 3.7 mi downstream from Rummel Creek, 7.2 mi downstream from gage near Addicks (station 08073500), and 12.5 mi upstream from gage at Houston (station 08074000). DRAINAGE AREA . - 317 mf2. MAX MIN 44.15 33.50 42.35 33.32 36.56 33.54 PERIOD OF RECORD .-- October 1963 to September 1976, October 1976 to September 30, 1984 (gage heights only). GAGE .-- Water-stage recorder. Datum of gage is 1.35 ft below National Geodetic Vertical Datum of 1929, 1973 adjustment. Telemetry located at station. REMARKS.--Station is operated for the purpose of gate
regulations at Barker and Addicks Reservoirs (stations 08072500 and 08073000), located 14.0 and 13.8 mi upstream, respectively. Low flow is partly sustained by sewage effluent from Houston suburbs. AVERAGE DISCHARGE.--13 years (water years 1963-76), 265 ft³/s (192,000 acre-ft/yr). 42.50 33.51 40.86 33.57 EXTREMES FOR PERIOD OF RECORD.--Maximum discharge estimated, 5,700 ft³/s Aug. 31, 1981 (gage height, 57.20 ft, from floodmark); minimum daily, 6.0 ft³/s Dec. 6, 7, 1964. EXTREMES FOR CURRENT YEAR .-- Maximum gage height, 45.20 ft July 18 at 2000 hours; minimum, 33.00 ft June 28, 30. #### GAGE HEIGHT. IN FEET, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MAXIMUM VALUES OCT JUL AUG SEP DAY NOV DEC JAN FE.B MAR APR MAY JUN 44.15 33.91 33.58 33.82 34.03 34.29 33.87 34.33 33.67 33.75 36.95 36.60 38.55 38.25 33.82 34.90 33.98 2 44.00 34.00 33.90 33.78 33.57 33.86 34.94 33.88 41.25 43.80 33.69 35.77 33.88 33.69 33.57 33.60 35.15 43.40 34.17 33.61 37.20 5 34.90 36.27 33.98 33.81 33.54 33.56 35.10 42.50 34.95 36.29 33.94 34.03 35.22 33.50 33.81 37.57 39.33 6 35.40 42.35 36.05 33.94 33.80 33.97 33.54 33.40 40.85 37.45 33.84 35.40 33.70 33.57 39.23 37.65 34.42 34.88 33.94 33.84 33.65 35.80 38.00 36.50 35.22 34.12 8 34.25 34.17 33.62 34.75 38.10 37.95 37.10 34.21 35.17 34.30 42.50 37.25 33.56 33.52 34.83 33.75 34.08 34.02 33.47 37,25 37.62 38.00 10 34.05 34.35 33.32 34.45 38.50 34.45 37.25 37.42 35.35 11 33.98 33.90 35.22 38.46 34.35 33.55 33.81 33.25 34.34 38,00 34.75 33.62 39.99 38.50 12 33.86 33.60 33.50 35.23 36.63 35.21 33.44 33.30 34.00 35.26 33.97 35.07 34.18 13 33.88 35.22 34.15 36.64 33.32 33.75 35.87 33.52 33.54 37.90 36.52 36.35 36.25 33.31 33.32 33.75 33.68 14 33.75 35.02 33.98 35.14 36.02 33.59 15 33.66 35.97 36.48 34.14 34.00 34.46 35.75 33.32 33.72 35.00 33.30 33.38 16 36.56 34.35 33.67 33.84 35.47 35.50 36.58 17 33.34 33.39 34.38 33.68 34.50 33.99 33.97 33.29 33.36 33.42 33.60 33.68 45.20 34.57 35.15 33.92 34.67 34.18 33.61 41.59 34.00 34.40 33.57 33.89 33.88 33.66 33.55 33.51 33.98 35.95 10 34.19 34.02 35.36 33.39 41.34 33.90 44.00 33.54 40.86 39.50 20 34.00 33.45 33.48 34.34 33.80 21 34.01 33.91 34.29 33.55 39.92 39.70 34,12 33.45 39.25 33.55 35.93 37.03 33.37 33.34 34.05 33.61 33.85 39.30 33.65 37.83 22 33.77 33.80 33.45 ---33.54 23 33.90 36.08 38.57 39.76 41.54 39.35 33.39 ---33.61 38.02 36.27 35.95 39.72 39.43 33.43 34.38 35.40 24 33.80 38.55 41.32 33.36 39.20 37.90 33.60 38.35 35.02 25 33.62 36.09 33.60 37.47 ---26 33.50 34.47 33.80 37.35 38.45 34.63 33.62 36.70 34.35 35.38 34.27 33.55 33.57 34.32 34.20 34.00 37.15 35.95 ---35.29 34.21 33.84 33.75 33.75 33.62 34.24 33.92 28 34.00 34.72 36.03 34.91 33.41 ___ 33.79 33.81 33.95 33.80 34.35 33.60 34.30 29 33.62 34-21 35.10 33.75 33.45 33.74 33.76 30 33.61 36.80 33.70 34.74 38.50 33.62 33.70 31 34.21 33.85 33.93 37.10 38.02 41.54 33.49 34.83 33.29 41.59 33.25 40.85 33.39 42.70 ## 08074000 BUFFALO BAYOU AT HOUSTON, TX LOCATION.--Lat 29°45'36", long 95°24'30", Harris County, Hydrologic Unit 12040104, at bridge on Shepherd Drive in Houston and 0.8 mi upstream from Waugh Drive. DRAINAGE AREA. -- 358 mi2, unadjusted for basin boundary changes. PERIOD OF RECORD.--May 1936 to September 1957, October 1957 to December 1961 (high-water records and discharge measurements), January 1962 to September 1975, October 1975 to current year (high-water records and discharge measurements) Water-quality records.--Chemical, biochemical, and pesticide analysis: October 1968 to September 1981. REVISED RECORDS. -- WSP 1732: Drainage area (former site). GAGE..-Water-stage recorder and crest-stage gages. Datum of gage is 1.36 ft below National Geodetic Vertical Datum of 1929, 1973 adjustment; records unadjusted for land-surface subsidence. Prior to June 19, 1936, nonrecording gage, and June 19, 1936, to Jan. 16, 1962, water-stage recorder at site 0.8 mi downstream at 4.08-toot lower datum. Jan. 17, 1962, to Sept. 30, 1973, auxiliary water-stage recorder 0.8 mi downstream. Water-stage recorder at Main Street (station 08074600) used as auxiliary gage after Sept. 30, 1973. Telemetry located at station. REMARKS.--Records poor. Although floodflows are regulated by Barker and Addicks Reservoirs (stations 08072500 and (08073000) located 26.3 and 26.8 mi upstream, respectively, flood peaks from the urbanized areas below these reservoirs are often independent of the regulation. Discharge is computed uaing a stage-fall-discharge relationship for all storms that produce peak discharges above 1,500 ft³/s. Discharges below 1,000 ft³/s are computed or estimated following designated storm periods only. Low flow is mostly sustained by sewage effluent from Houston suburbs. Gage heights are affected by tides, backwater from Whiteoak Bayou, and other streams. AVERAGE DISCHARGE.--8 years (water years 1936-44) unregulated, 272 ft³/s (197,100 acre-ft/yr); 26 years (water years 1944-57, 1962-75) regulated, 274 ft³/s (198,500 acre-ft/yr). EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 10,900 ft³/s Aug. 30, 1945 (gage height, 28.82 ft), at site 0.8 mi downstream at present datum; minimum daily, 1.3 ft³/s May 24, 1939, Nov. 5, 1950. EXTREMES OUTSIDE PERIOD OF RECORD.--All flood data at site 0.8 mi downstream at present datum. Maximum gage height since at least 1835, 49.0 ft Dec. 9, 1935 (discharge, 40,000 ft³/s); furnished by engineer for Harris County. Flood of May 31, 1929, reached a gage height of 43.5 ft (discharge, 19,000 ft³/s) at bridge on Capitol Avenue, affected by bridge; furnished by city of Houston. EXTREMES FOR CURRENT YEAR.--Maxmum discharge, 2,090 ft³/s Jan. 9 at about 0800 hours (gage height, 13.81 tt); minimum discharge not determined (affected by tides). ## DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SŁP | |----------------------------|------|-----|-----|------|-----|-----|-----|-----|-----|------|-----|-----| | 1 | 1400 | | | | | | | | | | | | | 2 | 1400 | | | | | | | | | | | | | 2
3
4
5 | 1400 | | | | | | | | | | | | | 4 | 1400 | | | | | | | | | | | | | '5 | 1060 | | | | | | | | | | | | | • | | | | | | | | | | | | | | 6 | 367 | | | | | | | | | | | | | 6
7 | | | | | | | | | | | | | | 8
9
10 | | | | | | | | | | | | | | š | | | | 1500 | | | | | | | | | | 10 | | | | 500 | | | | | | | | | | | | | | 300 | | | | | | | | | | 11 | | | | | | | | | | | | | | 11
12
13
14
15 | | | | | | | | | | | | | | 13 | | | | | | | | | | | | | | 14 | | | | | | | | | | | | | | 15 | 16
17 | | | | | | | | | | | | | | 17 | | | | | | | | | | | | | | 18 | | | | | | | | | | 152 | | | | 19 | | | | | | | | | | 1130 | | | | 18
19
20 | | | | | | | | | | 360 | | | | | | | | | | | | | | | | | | 21
22
23
24
25 | | | | | | | | | | | | | | 22 | | | | | | | | | | | | | | 23 | | | | | | 228 | | | | | | | | 24 | | | | | | 859 | | | | 495 | | | | 25 | | | | | | | | | | 881 | | | | | | | | | | | | | | | | | | 26 | | | | | | | | | | 599 | | | | 27
28
29 | | | | | | | | | | | | | | 28 | | | | | | | | | | | | | | 29 | | | | | | | | | | | | | | 30 | | | | | | | | | | | | | | 31 | TOTAL | | | | | | | | | | | | | | MEAN | | | | | | | | | | | | | | MAX | | | | | | | | | | | | | | MIN | | | | | | | | | | | | | | AC-FT | ## WHITEOAK BAYOU DRAINAGE BASIN The locations of data-collection sites in and near the Whiteoak Bayou drainage basin are shown in figure 5. Cole Creek (including Bingle Road Storm Sewer), Brickhouse Gully, Lazybrook Street Storm Sewer, and Little Whiteoak Bayou are shown as separate drainage basins within the Whiteoak Bayou section. Weighted-mean rainfall in the drainage basin, based on twelve rain gages for the 1984 water year was 32.17 inches or 16.02 inches less than the 30-year (1941-70) average of 48.19 inches for Houston. The monthly totals in inches for the 1984 water year weighted-mean rainfall are as follows: Oct. Nov. Dec. Jan. Feb. Mar. Apr. May June July Aug. Sep. Total 0.80 3.32 1.60 3.04 3.50 2.47 0.39 2.81 2.71 6.49 2.79 2.25 32.17 The storms of Mar. 23-25 and June 6-8 were selected for analysis at the Whiteoak Bayou at Houston (08074500) gaging station. Figure 5. - Locations of data-collection sites in and near the Whiteoak Bayou drainage basin ## COLE CREEK DRAINAGE BASIN The locations of data-collection sites in and near the Cole Creek drainage basin are shown in figure 6. Bingle Road Storm Sewer is shown as a separate drainage basin within the Cole Creek section. Weighted-mean rainfall in the drainage basin, based on five rain gages, for the 1984 water year was 29.47 inches, or 18.72 inches less than the 30-year (1941-70) average of 48.19 inches for Houston. The monthly totals, in inches, for the 1984 water year weighted-mean rainfall are as follows: Oct. Nov. Dec. Jan. Feb. Mar. Apr. May June July Aug. Sep. Total 0.75 3.01 1.44 2.94 3.90 2.39 0.19 2.47 1.46 6.44 1.97 2.51 29.47 The storm of July 18-20 was selected for analysis at station 08074150, Cole Creek at Deihl Road. Figure 6.— Locations of data—collection sites in and near the Cole Creek drainage basin ## BINGLE ROAD STORM SEWER DRAINAGE BASIN The location of data-collection sites in and near the Bingle Road Storm Sewer drainage basin are shown in figure 7. Weighted-mean rainfall for the 1984 water year was not determined. The storm of July 5 was selected for analysis at station 08074145, Bingle Road Storm Sewer at Houston, Tex. Figure 7.-Locations of data-collection sites in and near the Bingle Road storm sewer drainage basin TX-35 Rev. 5/80 UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY-TEXAS DISTRICT ANNUAL STORM RAINFALL-RUNOFF SUMMARY DATA Table 4.--Storm rainfall-runoff data, 1984 Water Year, Bingle Road Storm Sewer | Date of Storm | 85%
Duration | Weighted | Rainfall
Maximum Incr |
Rainfall (inches)
Maximum Increment Recorded in Basin | ed in Basin | Runoff | Ratio
runoff to | Maximum
discharge | |---------------|-----------------|--------------|---|--|-------------|----------|--------------------|----------------------| | | (hours) | Tota1 | 15-minute | 30-minute | 60-minute | (inches) | rainfall | (ft^3/\check{s}) | | | | Bingle
([| e Road Storm Sewer at Houston, TX. (Drainage area 0.21 mi. ²) | ewer at Houst
0.21 mi. | on, TX. | | | | | July 5, 1984 | 0.4 | 1.13 | 0.57 | 1.00 | 1.11 | 0.41 | 0.36 | 88 | 36- | _ | | | | | | | | | | | | | | | ## 08074145 BINGLE ROAD STORM SEWER AT HOUSTON, TX (Flood-hydrograph partial-record station) LOCATION.--Lat 29°51'31", long 95°29'09", Harris County, Hydrologic Unit 12040104, over a 60-inch storm sewer in the center median at Bingle Road and 3,000 ft north of the station Cole Creek at Deihl Road, Houston (08074150). DRAINAGE AREA. -- 0.21 mi2. ## WATER-DISCHARGE RECORDS PERIOD OF RECORD .-- May 1980 to current year. GAGE .-- Flood-hydrograph and rainfall recorder and crest-stage gage. Datum of gage is arbitrary. REMARKS.--Additional storm rainfall-runoff data for this site can be obtained from the reports "Hydrologic Data for Urban Studies in the Houston, Texas Metropolitan Area." EXTREMES FOR PERIOD OF RECORD.--Maximum discharge not determined, rating definition pending; maximum gage height, 13.97 ft Aug. 31, 1981, is a recorded pressure head in the access pipe and exceeds gage height for full pipe flow. EXTREMES FOR CURRENT YEAR .-- Peak discharges above base gage height of 11.00 ft and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |---------|---------|----------------------|---------------------| | June 6 | unknown | (a) | b11.55 | | July 18 | 1858 | (a) | *b12.87 | Discharge not determined; rating definition pending. Recorded pressure head; gage height for full pipe flow exceeded. ---- Minimum daily discharge not determined. ## WATER-QUALITY RECORDS PERIOD OF RECORD. -- Chemical, biochemical, and pesticide analyses: May 1980 to current year. | DATE | T IME | STREAL
FLOW
INSTAL
TANEOL
(CFS | M- C:
, CC
N- DI
US AI | PE -
IF IC
DN -
JCT -
ICE
(HOS) | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
(DEG C) | COLI
(PL
INUI
COB
UNII | AT - '
M - '
ALT | rur-
Bid-
Ity
Ntu) | OXYGEN,
DIS-
SOLVEI
(MG/L) | SOI
(Pi
CI
SAI | GEN,
IS-
LVED
ER-
ENT
FUR-
ION) | OXYGEN DEMAND, BIO- CHEM- ICAL, DAY (MG/L) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML) | STREP-
TOCOCCI
FECAL,
KF AGAR
(COLS.
PER
100 ML) | |-------------------|--|---|---|--|--|---|------------------------------------|---|---|--|--|---|---|--|--| | DEC
16-16 | 0600 | 3. | 0 | 187 | | | | 35 | 20 | | · | | 8.1 | | | | FEB
07
20 | 0940
0530 | 2. | 19
0 | 858
61 | 7.5 | 16.0 | | <1
70 | 1.5
27 | 7.5 | | 75
 | 1.4 | K2 | 1800 | | JUL
02 | 1315 | • • | 43 | 588 | 8.1 | 27.0 | | 3 | 1.1 | 7.2 | ! | 90 | 1.0 | K1 | K1 | | DATE | HARD-
NESS
(MG/L
AS
CACO3) | HARI
NESS
NONCA
BONAT
(MG,
CAC | S, CA
AR- I
TE S
/L (| LCIUM
DIS-
SOLVED
MG/L
S CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM
DIS-
SOLVED
(MG/L
AS NA) | SOI
T:
RAT | AD-
RP-
ION S | POTAS -
SIUM,
DIS -
SOLVED
(MG/L
AS K) | ALKA-
LINITY
FIELD
(MG/L
AS
CACO3 | SUI
DI
SC | LFATE
IS-
OLVED
IG/L
SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVEI
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | | DEC
16-16 | 49 | | 20 | 17 | 1.7 | 16 | | 1 | 2.0 | 2 | 0 | 12 | 30 | <.10 | 2.7 | | FEB | | | | | | | | • | | | | | | | | | 07
20 | 220 | | 0 | 68 | 13 | 100 | | 3 | 2.4 | 29 | - | 16 | 88 | .50 | 21 | | JUL
02 | 130 | | 0 | 39 | 7.0 | 78 | | 3 | 2.6 | 18 | 0 | 12 | 62 | .40 | 20 | | | TUE!
Di
SO: | OF ISTI- ANTS, IS- | SOLIDS,
RESIDUE
AT 105
DEG. C,
SUS-
PENDED | SOLI
VOL
TIL
SUS
PEND | A- G
E, NIT
- TO
ED (M | EN, C
RATE NIT
FAL TO
G/L (N | TRO-
SEN,
RITE
VTAL | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L | GE
B AMMO
TOT
(MO | EN,
ONIA OR
CAL T
G/L (| ITRO-
GEN,
GANIC
OTAL
MG/L | GEN,
MONI
ORGA
TOT
(MC | ANIC PHO
CAL TO
G/L (M | RUS, ORG
TAL TO
G/L (M | BON,
ANIC
TAL
G/L | | DAT | E (MC | G/L) | (MG/L) | (MG | /L) AS | N) AS | N) | AS N) | ÁS | N) A | S N) | ÁS | N) AS | P) AS | C) | | DEC
16-
FEB | -16 | 99 | 47 | | 14 | .64 | .060 | .70 | | 170 | .73 | | .90 | .370 | 7.3 | | 07.
20.
JUL | | 480 | <2
75 | | <2
12 | .19 | .010 | <.10
.20 | | 020
050 | .45 | (| | .070
.410 | 1.5
9.5 | | 02. | •• | 330 | <2 | | <2 | < | . 01 0 | <.10 | | 080 | | < | .20 | • 050 | .6 | ## 08074145 BINGLE ROAD STORM SEWER AT HOUSTON, TX--Continued | | | DA | TI
T E | DI
SOI
ME (UC | IS- DIE
LVED SOLE
G/L (UG | S- D
VED SO
G/L (U | MIUM MI
IS- DI
LVED SO
G/L (U | S- DI
LVED SC
G/L (U | | S-
VED
/L | | | |-----------|------|------------------------|-----------------------------------|--|--|--|--|--|----------------------------|---------------------------|----------------------------------|-----------------------------------| | | | JUL
02 | | 15 · | 2 | 240 | <1 | <10 | 23 | 8 | | | | | | | DATE | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY
DIS-
SOLVED
(UG/L
AS HG) | DIS- | SILVER,
DIS-
SOLVEI
(UG/L
AS AG) | DIS-
SOLVED
(UG/L | | | | | | | | JUL
02 | 11 | 2 | <.1 | <1 | <1 | 8 | | | | | DATE | TIME | AME-
TRYNE
TOTAL | ATRA-
ZINE,
TOTAL
(UG/L) | CYAN-
AZINE
TOTAL
(UG/L) | METHO-
MYL
TOTAL
(UG/L) | PROME-
TONE
TOTAL
(UG/L) | PROME-
TRYNE
TOTAL
(UG/L) | PRO-
PAZINE
TOTAL
(UG/L) | PROPHAM
TOTAL
(UG/L) | SEVIN,
TOTAL
(UG/L) | SIMA-
ZINE
TOTAL
(UG/L) | SIME-
TRYNE
TOTAL
(UG/L) | | JUL
02 | 1315 | <.10 | <.10 | <.10 | <2.0 | ۲.1 | ۲,1 | <.10 | <2.0 | <2.0 | <.10 | ⟨.1 | ## STORM RAINFALL AND RUNOFF 08074145 BINGLE ROAD STORM SEWER AT HOUSTON, TEX. | DATE | ACCUMU- | ACCUMU- | DISCHARCE | ACCUMU- | |-----------|---------------------|---------------------|---------------------|--| | AND | LATED | LATED | DIGGINIOL | LATED | | TIME | | WEIGHTED | | RUNOFF | | I I I'IE. | | | | KONUFF | | | FALL | RAINFALL | | | | | AT | | (0) 17 7 0 | | | | GAGE | | (CUBIC | | | | 4145 | | FEET | | | | | | PER | | | | (INCHES) | (INCHES) | SECOND) | (INCHES) | | | | | | | | | STORM | OF JULY 5 | | time was like for held fire time and one time time | | JULY5 | | | | | | 0000 | O. O | O . O | 0. 2 | 0. 0044 | | 0600 | 0 . 0 | O . O | 0.2 | 0. 0133 | | 1200 | 0. 0 | Q. Q | 0. 2 | 0.0208 | | 1615 | 0. 0 | Q. Q | 0. 2 | 0. 0240 | | 1620 | 0.02 | 0. 02 | 0. 2 | 0. 0242 | | 1625 | 0. 04 | 0. 04 | 0. 2 | 0. 0243 | | 1630 | 0.07 | 0. 07 | 0. 2 | 0. 0244 | | 1635 | 0. 26 | 0. 26 | 0. 2 | 0. 0245 | | 1640 | 0. 45 | 0. 45 | 0. 3 | 0. 0247 | | 1645 | 0. 64 | 0. 64 | 1. 9 | 0. 0259 | | 1650 | 0. 78 | 0. 78 | 3. 0 | 0. 0277 | | 1655 | 0. 92 | 0. 92 | 33. 0 | 0. 0480 | | 1700 | 1. 07 | 1.07 | 69. 0 | 0. 0905 | | 1705 | 1.08 | 1.08 | 88. O | 0. 1446 | | 1710 | 1. 09 | 1.09 | 85. Q | 0. 1968 | | 1715 | 1. 11 | 1. 11 | 77. 0 | 0. 2442 | | 1720 | 1. 11 | 1. 11 | 62. 0 | 0. 2823 | | 1725 | 1. 11 | 1. 11 | 46. 0 | 0. 3106 | | 1730 | 1. 12 | 1. 12 | 32. 0 | 0. 3303 | | 1735 | 1. 12 | 1. 12 | 23. 0 | 0. 3444 | | 1740 | 1. 12 | 1. 12 | 18. 0 | 0. 3555 | | 1745 | 1. 12 | 1. 12 | 14. 0 | 0. 3641 | | 1750 | 1. 12 | 1. 12 | 10.0 | 0. 3702 | | 1755 | 1. 12 | 1. 12 | 7. 3 | 0. 3747 | | 1800 | 1. 13 | 1. 13 | 5. B | 0.3872 | | 1830 | 1. 13 | 1. 13 | 2. 1 | 0. 3950 | | 1900 | 1. 13 | 1. 13 | 1.1 | 0. 4051 | | 2100 | 1. 13 | 1. 13 | 0. 2 | 0. 4088 | | 2400 | 1. 13 | 1. 13 | 0. <u>2</u>
0. 1 | 0. 40 88
0. 4099 | | 2400 | 1. 13 | 1. 13 | U. I | U. 4077 | # ANNUAL STORM RAINFALL-RUNOFF SUMMARY DATA Table 5. -- Storm rainfall-runoff data, 1984 Water Year, Cole Creek | Date of Storm | 85%
Duration | Weighted | Rainfall (inches)
Maximum Increment Recorded in Basin | (inches) | ed in Basin | Runoff | Ratio
runoff to | Maximum
discharge | |------------------|-----------------|----------|---
-----------------------------|---------------|----------|--------------------|------------------------------| | | (hours) | Total | 15-minute 30-minute | 30-minute | 60-minute | (inches) | rainfall | $(\mathrm{ft}^3/\mathrm{s})$ | | | | Cole C | Creek at Deihl Road, Houston, TX.
(Drainage Area 7.50 mi. ²) | l Road, Houst
a 7.50 mi. | on, TX.
2) | | | | | July 18-20, 1984 | 2.0 | 2.22 | 0.44 | 0.87 | 1.67 | 0.86 | 0.39 | 787* | -40- | | | | | | , | · | , | - | | | | | | | | | | | | | | | ^{* -} Peak Discharge for 1984 Water Year ## 08074150 COLE CREEK AT DEIHL ROAD, HOUSTON, TX LOCATION.--Lat 29°51'04", long 95°29'16", Harris County, Hydrologic Unit 12040104, on downstream side of bridge at Deihl Road in northwest Houston and 1.8 mi upstream from mouth. DRAINAGE AREA.--7.50 mi². Prior to Oct. 1, 1976, 8.05 mi². Prior to Oct. 1, 1979, 7.33 mi². Drainage area changes are the result of drainage ditch relocations and extensions. PERIOD OF RECORD.--April 1964 to current year. Gage at temporary location 1.0 mi downstream at Antoine Drive May 18, 1965, to Sept. 1, 1966, due to bridge construction and channel rectification. REVISED RECORDS .-- WRD TX-74-1: Drainage area. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is National Geodetic Vertical Datum of 1929, 1957 adjustment; unadjusted for land-surface subsidence. MARKS.--Records fair. No diversion above station. Low flow is partly sustained by sewage effluent from Houston suburbs. Recording rain gage at station. Several observations of water temperature were made during the year. REMARKS. -- Records fair. AVERAGE DISCHARGE. -- 20 years, 7.79 ft 3/s, 5,640 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,020 ft3/s Mar. 20, 1972 (elevation, 78.60 ft); no flow at times. EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 787 ft 3/s July 18 at 1930 hours (elevation, 75.95 ft); no other peaks above base of 400 ft3/s; minimum daily, 0.08 ft3/s Aug. 16. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 | | | DIOGIA | NOL, 111 C | ODIO IEEI | | MEAN VALU | | 100EK 1903 | TO SELL | EIIDER 1904 | | | |--------------------------------------|--|-----------------------------------|----------------------------------|--|------------------------------------|--|-----------------------------------|---------------------------------------|---------------------------------------|---|--------------------------------------|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1.70
1.50
1.50
1.20
1.40 | 10.0
4.0
2.7
2.9
20.0 | 2.0
2.5
12.0
2.3
1.4 | 1.6
1.7
1.6
1.7 | 1.6
4.7
3.7
1.8
1.7 | 2.9
3.0
2.8
2.6
6.9 | 2.0
3.5
4.7
2.3
2.0 | 1.70
1.50
1.30
1.10
.83 | 1.60
1.50
1.50
1.30
2.10 | 2.70
2.00
4.40
.80
19.00 | .32
3.10
6.60
14.00
4.50 | 1.30
23.00
1.60
.64
1.20 | | 6
7
8
9
10 | 1.10
.95
1.20
1.10
1.10 | 76.0
6.3
3.1
8.5
2.7 | 1.2
1.2
1.2
1.1
6.6 | 1.6
1.6
1.7
91.0
5.5 | 1.8
1.5
1.6
21.0
2.9 | 2.9
2.8
2.6
2.4
2.4 | 2.1
2.6
3.2
2.1
2.0 | .67
1.70
1.90
.60
.84 | 61.00
4.70
2.20
1.80
1.40 | 1.80
1.50
3.20
6.10
5.30 | 2.00
1.00
.51
.32
1.10 | .89
1.60
.94
.56 | | 11
12
13
14 | 1.10
1.70
1.20
1.30
1.20 | 1.6
1.8
1.6
1.5 | 3.7
1.5
1.5
1.4 | 2.6
2.4
2.0
2.2
3.2 | 2.3
187.0
13.0
6.1
4.6 | 2.3
17.0
76.0
6.6
4.3 | 2.3
1.8
1.7
1.8
1.6 | .64
.79
.61
.72 | 2.30
1.60
1.80
1.40
1.00 | 5.70
8.40
3.90
2.50
1.80 | .51
1.30
.51
.58
.96 | .27
.95
.84
.26 | | 16
17
18
19
20 | 1.80
4.60
3.00
1.40
1.30 | 1.7
1.8
1.7
1.6
1.5 | 9.3
2.5
1.4
1.4 | 3.8
2.7
2.3
1.9
2.0 | 3.6
6.9
3.5
2.9
106.0 | 3.2
2.8
2.5
8.5
7.6 | 1.7
1.7
1.8
1.9 | .90
1.00
5.70
59.00
14.00 | 1.00
.96
1.60
1.00 | .96
.80
114.00
53.00
4.50 | .08
.21
.88
.65 | 1.70
.57
.51
.42
2.10 | | 21
22
23
24
25 | 1.60
1.40
1.30
1.60
1.80 | 1.5
1.9
5.7
1.6
1.4 | 2.9.
1.4
1.4
1.5 | 2.1
2.3
43.0
9.9
4.2 | 35.0
6.1
4.3
3.6
3.1 | 2.7
2.2
16.0
14.0
2.9 | 1.7
1.8
1.8
2.2
2.5 | 12.00
3.50
2.20
1.80 | .65
.96
.65
.51 | .96
.80
.72
22.00
20.00 | .47
.61
.13
4.20
2.80 | 12.00
9.00
.84
.46
1.00 | | 26
27
28
29
30
31 | 1.30
1.70
5.50
5.80
2.10
2.70 | 1.6
3.1
1.7
1.6
1.8 | 1.8
2.1
1.5
1.4
1.5 | 3.4
2.6
2.4
2.3
2.6
2.3 | 6.4
4.0
3.1
2.9 | 2.4
2.5
2.2
2.1
2.1
2.0 | 2.5
1.4
1.2
1.0
1.3 | 1.70
1.70
1.60
1.90
1.60 | .38
.38
.51
.51 | 2.30
1.60
57.00
9.60
.88
.44 | .72
.55
.31
.88
.80 | .52
.40
.40
.34
.34 | | TOTAL
MEAN
MAX
MIN
AC-FT | 58.15
1.88
5.8
.95
115 | 174.5
5.82
76
1.4
346 | 75.7
2.44
12
1.1
150 | 211.9
6.84
91
1.6
420 | 446.7
15.4
187
1.5
886 | 213.2
6.88
76
2.0
423 | 61.9
2.06
4.7
1.0
123 | 127.87
4.12
59
.60
254 | 98.59
3.29
61
.38
196 | 358.66
11.6
114
.44
711 | 52.64
1.70
14
.08
104 | 66.63
2.22
23
.26
132 | CAL YR 1983 TOTAL 4538.24 WTR YR 1984 TOTAL 1946.44 MIN .77 MEAN 12.4 MAX 591 AC-FT 9000 MEAN 5.32 MAX 187 MIN .08 AC-FT 3860 ## STORM RAINFALL AND RUNOFF OB074150 COLE CREEK AT DEIHL ROAD, HOUSTON, TEX. | | ACCUMU-
LATED
RAIN-
FALL
AT | ACCUMU
LATED
RAIN
FALL
AT | ACCUMU -
LATED
RAIN -
FALI
AT | | LATED | | ACCUMU-
I ATED
RUNOFF | |--------|---|---------------------------------------|---|--------------------------------|---|------------------|------------------------------------| | | GAGE | GAGE | GAG! | GAGE | | (CUBIC | | | | 4150 | 4145 | 205k | 21R | | FEET
PER | | | | (INCHES) | (INCHES) | (INCHES) | (INCHES) | (INCHES) | | () NCHES) | | | e PPPE - helf some delse sode e en nou, skalt bres sode e | STORM | OF JULY 18 | 20, 1984 | . 1450 van 2450 van 2450 toes 1650 1650 1 | | | | JULY18 | | | _ | | | | | | 0000 | 0. 0 | 0. 0
0. 0 | 0. 0
0. 0 | 0. 0
0. 0 | 0. 0
0. 0 | 0. 3
0. 1 | 0. 0002
0. 00 03 | | 0600 | U. U | O. O | 0. 0
0 . 0 | | 0.0 | | | | 1200 | | | 0 . 0 | 0. 0 | O. Q | | 0.0005 | | 1630 | 0. 0 | 0. 0
0. 47 | 0, 0
0, 0 | 0. 0
0. 3 0 | 0. 0 | 0. 2 | 0. 0006
0. 0007 | | 1700 | 0. 07 | | | | 0. 27 | 0. 2 | | | 1730 | 0. 20 | 0. 53 | 0. 12 | 0. 52 | 0. 43 | 26. 0 | 0. 0033 | | 1800 | 0. 23 | 0. 65 | 0. 16 | 0. 93
1. 67
2. 22 | 0. 69 | 51.0
268.0 | 0.0086 | | 1830 | 1.07 | 0. 65
1. 52 | 1. 0? | 1.67 | | | | | 1900 | 1. 90 | ∠. ∠.⊃ | 1. 7J | | | | 0. 0863 | | 1930 | 1. 92 | 2 28
2 28 | 1. 73
1. 74 | 2. 25
2. 26 | 2. 14 | 787. 0 | 0. 1676 | | 5000 | 1. 93 | 2. 28 | 1 74 | 2. 26 | 2. 15 | | 0.7393 | | 2030 | 1. 94 | 2 30 | 1. 75 | 2. 30 | 2. 18 | 598 . 0 | 0. 3011 | | 2100 | 1 95 | e' 3e' | 1. 76 | 2. 30 | 2. 19 | 502. 0 | 0. (()29 | | | 1 96 | | 1. 70 | | 2. 19 | 463. 0 | | | 5500 | 1. 96 | 2 34 | 1 80 | 2. 30 | 2. 20 | 424. 0
385. 0 | 0. 4446 | | 2230 | 1 96 | 2. 35 | 1 80
1 80 | 2 30 | 2. 20 | 385. 0 | 0. 4043 | | | 1. 96 | 2. 38 | I. WI | 2. 30 | | 355. O | | | 2330 | 1. 96 | 2 39 | 1.82 | 2. 30 | 2. 21 | | 0. 5547 | | 2400 | 1. 96 | 2. 39 | 1 87 | 2. 30 | 2. 21 | 2 96. 0 | 0. 6005 | | JULY19 | 1. 96
1. 96 | | | | | | | | 0000 | 1. 96 | 2. 39 | 1.82 | 2. 30
2. 30 | 2. 21
2. 21 | 296. 0
221. 0 | 0. 60 05
0. 64 62 | | 0100 | 1. 96 | 2.40 | 1.82 | | 2. 21 | 221.0 | | | 0200 | 1.96 | 2. 41 | 1.87 | 2. 30 | | | 0. 6034 | | 0300 | 1 96 | 2.41
2.41
2.42 | 1.82 | 2. 30
2. 30 | 2. 22 | 138. 0 | 0. 7262 | | 0500 | 1. 96 | 2 41 | 1.82 | 2.30 | 2. 22 | 90.0 | 0. 7541 | | 0600 | 1.96 | | 1.82 | 2. 30 | 2. 22 | 66. 0 | 0.8018 | | 1200 | 1. 96 | 2. 42 | 1 87 | 2. 30 | 2. 22 | 15.0 | O. 82'04 | | 1800 | 1 96 | 2. 42 | 1.87 | 2. 30 | 2. 22 | 3. 2 | 0. 8230 | | 5000 | 1.96 | 2. 42 | 1 82 | 2. 30 | 2. 22 | 1.8 | 0. 3738 | | 5500 | 1. 96 | 2 42 | 1.82 | 2.30 | 2. 22 | 15. O | 0. 8300 | | | 1. 9 6 | 2 42 | 1.87 | 2. 30 | 2. 22 | 22. 0 | 0. 8391 | | JULY20 | | | 4 | | | | | | 0000 | 1. 96 | 2.42 | 1 82 | 2. 30 | 2. 22 | 22. 0 | 0.8391 | | 0200 | 1 96 | 2.42 | 1.87 | 2. 30 | 2. 22 | 16 0 | 0. 8457 | | 0400 | 1. 96 | 2. 42 | 1. 82 | 2. 30 | 2. 22 | 6. ¢ | 0. 8485 | | 0600 | 1 96 | 2.42 | 1. 87 | 2. 30 | 2 22 | 4.6 | 0.8523 | | 1200 | 1. 96 | 2.42 | 1.82 | 2. 30 | 2. 22 | 2. 5 | 0.8554 | | 1800 | 1.96 | 2.42 | 1.87 | 2. 30 | 2. 22 | 1.0 | 0.8567 | | 2400 | 1.96 | 2 42 | 1. 82 | 2. 30 | 2. 22 | 0. 4 | 0. 8569 | ## BRICKHOUSE GULLY DRAINAGE BASIN The location of data-collection sites in and near the Brickhouse Gully drainage basin are shown in figure 8. Weighted-mean rainfall in the drainage basin based on six rain gages for the 1984 water year was 29.12 inches or
19.07 inches less than the 30-year (1941-70) average of 48.19 inches for Houston. The monthly totals, in inches, for the 1984 water year weighted-mean rainfall are as follows: Oct. Nov. Dec. Jan. Feb. Mar. Apr. May June July Aug. Sep. Total 0.72 2.60 1.25 2.95 3.18 2.50 0.13 2.58 1.34 6.68 3.12 2.07 29.12 The storm of July 18-19 was selected for analysis at station 08074200, Brickhouse Gully at Clarblak Street. The storm of July 18-20 was selected for analysis at station 08074250, Brickhouse Gully at Costa Rica Street. Figure 8.-Locations of data-collection sites in and near the Brickhouse Gully drainage basin TX-35 Rev. 5/80 ## UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY-TEXAS DISTRICT ANNUAL STORM RAINFALL-RUNOFF SUMMARY DATA Table 6 .-- Storm rainfall-runoff data, 1984 Water Year, Brickhouse Gully | Date of Storm | 85%
Duration | Weighted | Rainfall (inches)
Maximum Increment Recorded in Basin | (inches)
ement Record | ed in Basin | Runoff | Ratio
runoff to | Maximum
discharge | |------------------|-----------------|------------------|---|--------------------------|--------------------|----------|--------------------|------------------------------| | | (hours) | Tota1 | 15-minute | 30-minute | 60-minute | (inches) | rainfall | $(\mathrm{ft}^3/\mathrm{s})$ | | | | Brickhouse
(I | Brickhouse Gully at Clarblak St., Houston, TX.
(Drainage Area 2.56 mi.2) | rblak St., H
2.56 mi. | ouston, TX.
2) | | | | | July 18-19, 1984 | 1.8 | 2.40 | 0.72 | 1.20 | 1.68 | 0.71 | 0.30 | 307* | - | | | | | | | | | | | | | | Brickhouse
(| : Gully at Costa Rica St., Houston, TX.
(Drainage Area 11.4 mi. ²) | a Rica St.,
11.4 mi. | Houston, TX.
2) | | | | | July 18-20, 1984 | 1.8 | 2.06 | 0.72 | 1.22 | 1.68 | 0.90 | 0.44 | 2610* | - | | | | - | | | | | | | | | | | | | | | -45- * - Peak Discharge for 1984 Water Year 08074200 Brickhouse Gully at Clarblak Street, Houston, Tex. (Flood-hydrograph partial-record station) LOCATION.--Lat 29°49'53", long 95°31'42", Harris County, Hydrologic Unit 12040104 at bridge on Clarblak Street, in northwest Houston, and 4.0 miles upstream from station at Costa Rica Street. DRAINAGE AREA.--2.56 mi². Drainage area, effective for period, April 1964 to current year. The boundary of the basin is poorly defined due to flat ground slopes. PERIOD OF RECORD--April 1964 to July 6, 1976, Jan. 26, 1977 to current year. GAGE.--Digital flood-hydrograph and rainfall recorders and crest-stage gage. Prior to April 7, 1978, a flood-hydrograph rainfall recorder (type SR) and crest-stage gage. Datum of gage is National Geodetic Vertical Datum of 1929, 1957 adjustment, unadjusted for land-surface subsidence. REMARKS.--Records fair. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 409 ft³/s, Oct. 15, 1980 (elevation 89.57 ft) after concrete lining of channel. Maximum elevation 94.28 ft, March 20, 1972 prior to concrete lining of channel. Hinimum discharge not determined. EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 200 ft^3/s and maximum (*): | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | |---------|---------------|-----------------------------------|---------------------| | July 9 | 15 4 5 | 268 | 88.11 | | July 18 | 1915 | *307 | 88.58 | Minimum discharge not determined. ## STORM RAINFALL AND RUNDFF 08074200 BRICKHOUSE GULLY AT CLARBLAK ST., HOUSTON, TEX. | DATE | ACCUMU- | ACCUMU- | ACCUMU- | DISCHARGE | ACCUMU- | |---|--|----------------|----------------|---|--------------------| | AND | LATED | L.ATED | LATED | | LATED | | TIME | RAIN- | RAIN- | WEIGHTED | | RUNOFF | | | FALL | FALL | RAINFALL | | | | | AT | AT | | | | | | GAGE | GAGE | | (CUBIC | | | | 4200 | 21R | | FEET | | | | | | | PER | | | | (INCHES) | (INCHES) | (INCHES) | | (INCHES) | | | | | | | | | oter has the over two tools blick billy | . Come cases when total cover after cases seem reque there | | | ga daga saan dare deen gap saan taab gaga dara
''''' | | | JULY18 | | STORM OF JUL | _t 18-19,19 | 764 | | | 0000 | 0. 0 | 0. 0 | 0. 0 | 1. 0 | 0. 0018 | | 0600 | 0. 0 | 0. 0 | 0. 0 | 1.0 | 0. 0018 | | 1200 | 0. 0 | 0. 0 | 0. 0 | 1.0 | 0. 0097 | | 1645 | 0. 0 | 0. 0 | 0. 0 | 1.0 | 0. 0102 | | 1700 | 0. 0 | 0. 30 | 0. 21 | 1.0 | 0. 0104 | | 1715 | 0. 36 | 0. 52 | 0. 47 | 10.0 | 0. 0119 | | 1730 | 0. 84 | 0. 52 | 0. 62 | 33. 0 | 0. 0149 | | 1745 | 0.84 | 0. 52 | 0. 62 | 63. 0 | 0. 0264 | | 1800 | 0.84 | 0. 93 | 0. 90 | 85. O | 0. 0284 | | 1815 | 1.08 | 1. 32 | 1. 25 | 98. O | 0. 0541 | | 1830 | 1. 56 | 1. 67 | 1. 64 | 153.0 | 0. 0773 | | 1845 | 2. 28 | 2. 02 | 2. 10 | 259. O | 0. 1164 | | 1900 | 2. 52 | 2. 22 | 2. 31 | 305. 0 | 0. 1626 | | 1915 | 2. 52 | 2. 24 | 2. 32 | 307. O | 0. 2091 | | 1930 | 2. 52 | 2. 25 | 2. 33 | 290. O | 0. 2529 | | 1945 | 2. 52 | 2. 25 | 2. 33 | 263. 0 | 0. 2927 | | 2000 | 2. 52 | 2. 26 | 2. 34 | 239. O | 0. 3289 | | 2015 | 2. 52 | 2. 28 | 2. 35 | 213. 0 | 0. 3611 | | 2030 | 2.64 | 2. 30 | 2. 40 | 187. O | 0. 4036 | | 2100 | 2. 64 | 2. 30 | 2. 40 | 147. 0 | 0. 4592 | | 2145 | 2.64 | 2. 30 | 2. 40 | 113.0 | 0. 5105 | | 2230 | 2. 64 | 2. 30 | 2. 40 | 86. Q | 0. 5430 | | 2300 | 2.64 | 2. 30 | 2. 40 | 64. O | 0. 5624 | | 2330 | 2.64 | 2. 30 | 2.40 | 48. O | 0. 5769 | | 2400 | 2. 64 | 2. 30 | 2. 40 | 40. O | 0. 6193 | | JULY19 | E. 07 | E. 30 | 2. 40 | 40.0 | 0. 6173 | | 0000 | 2. 64 | 2. 30 | 2. 40 | 40. 0 | 0. 6193 | | 0300 | 2.64 | 2. 30 | 2. 40 | 20. 0 | 0. 6556 | | 0400 | 2.64 | 2. 30
2. 30 | 2. 40
2. 40 | 10.0 | 0. 6538
0. 6829 | | 1200 | 2.64 | 2. 30 | 2. 40 | 4. 5 | 0. 6992 | | 1800 | 2.64 | 2. 30
2. 30 | 2. 40
2. 40 | 4. 5
3. 0 | 0. 7101 | | 2400 | 2. 64
2. 64 | 2. 30
2. 30 | 2. 40
2. 40 | 3. 0
2. 0 | 0. 7101
0. 7137 | | E-700 | E. UT | e. JV | e. 7V | E. U | | 08074250 Brickhouse Gully at Costa Rica Street, Houston, Tex. (Flood-hydrograph partial-record station) LOCATION.--Lat 29°49'40", long 95°28'09", Harris County, Hydrologic Unit 12040104, at downstream side of bridge at Costa Rica Street in northwest Houston and 1.0 mile upstream from Whiteoak Bayou. DRAINAGE AREA.--11.4 mi². Prior to Oct. 1, 1973, 11.6 mi². PERIOD OF RECORD. -- August 1964 to current year (operated as a continuous recording station prior to Oct. 1, 1981). GAGE.--Water-stage recorder and crest-stage gage. Low-water concrete control since Dec. 9, 1970. Datum of gage is National Geodetic Vertical Datum of 1929, 1957 adjustment; unadjusted for land-surface subsidence. REMARKS.--Water-discharge records good. Low flow is partially sustained by sewage affluent. No known diversion above station. Recording rain gage at station. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,800 ft³/s Mar. 20, 1972 (elevation, 69.20 ft); no flow at times. EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 1,600 ft³/s (revised) and maximum (*): | DATE | TIME | DISCH ARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | |---------|------|---|---------------------| | July 18 | 1930 | *2,610 | 63.91 | | July 25 | 1500 | 1,740 | 61.86 | | Aug. 2 | 2030 | 1,700 | 61.77 | Minimum discharge not determined. ## STORM RAINFALL AND RUNOFF 08074250 BRICKHOUSE GULLY AT COSTA RICA ST., HOUSTON, TEX. | DATE
AND
TIME | ACCUMU-
LATED
RAIN-
FALL
AT | ACCUMU-
LATED
RAIN-
FALL
AT
GAGE
4200 | ACCUMU
LATED
RAIN-
FALL | ACCUMU-
LATED
RAIN-
FALL | ACCUMU-
LATED
RAIN-
FALL | ACCUMU-
LATED
WEIGHTED
RAINFALL | D) SCHARGE | ACCUMU-
LATED
RUNOFF | |---------------------|---|--|----------------------------------|-----------------------------------|-----------------------------------|--|----------------|----------------------------| | | GAGE | GAGE | GAGE | GAGE | GAGE | | CCURIC | | | | 4250 | 4200 | 4150 | 205R | 21R | | T3:1-1
R-14 | | | | (INCHES) | (INCHES) | (INCHES) | (INCHES) | (INCHES) | (INCHES) | | (INCHES) | | | | 0. 0
0. 0
0. 0
0. 0
0. 84
0. 84
0. 88
1. 56
2. 52
2. 52
2. 52
2. 52
2. 52
2. 52
2. 52
2. 64
2. 64 | STORM OF JU | Y 18-20, 19 |
B4 | | | | | JULY18 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0007 | | 0000
1200 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0. 8 | 0.0007 | | 1645 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0021 | | 1700 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0025 | | 1715 | 0.0 | 0.0 | 0.07 | 0.0 | 0.50 | 0.03 | 7. 0 | 0.0025 | | 1730 | 0.0 | 0.30 | 0.20 | 0.08 | 0.52 | 0.25 | 0.7 | 0.0025 | | 1745 | 0.0 | 0.04 | 0.20 | 0.12 | 0.52 | 0.40 | 0.7 | 0.0026 | | 1800 | 0.0 | 0.04 | 0. 22 | 0.14 | 0.53 | 0.46 | 0.0 | 0.0026 | | 1815 | 0.0 | 1 00 | 0. E3 | 0.10 | 1 22 | 0.74 | 224.0 | 0.0026 | | 1830 | 0. 23 | 1.00 | 1.07 | 1 02 | 1 47 | 1 22 | 739. O | 0.0100 | | 1845 | 0.07 | 2 20 | 1.07 | 1.02 | 2.02 | 1.23 | 909.0 | 0.0280 | | 1900 | 1 14 | 2.50 | 1.00 | 1 71 | 2.02 | 1.70 | 1650.0 | 0.0007 | | 1915 | 1 15 | 2.52 | 1.70 | 1.71 | 2.22 | 1.70 | 2820.0 | 0.1177 | | 1930 | 1 14 | 2.52 | 1.70 | 1.72 | 2.27 | 1.7/ | 2410.0 | 0.17/3 | | 1945 | 1.17 | 2.52 | 1 00 | 1.73 | 2 25 | 1.70 | 21.10.0 | 0.2000 | | 2000 | 1 10 | 2. JE
2. 52 | 1.76 | 1 74 | 2.20 | 1.70 | 2020.0 | 0.3/13 | | 2015 | 1 10 | 2.52 | 1 02 | 1 75 | 2.20 | 1.77 | 1950.0 | 0.5147 | | 2030 | 1 10 | 2.52 | 1.75 | 1.75
| 2.20 | 2.77 | 1730.0 | 0.5147 | | 2045 | 1 19 | 2.04 | 1 04 | 1.74 | 2.30 | 2.03 | 1010.0 | 0.5074 | | 2100 | 1.20 | 2.04 | 1 05 | 1 74 | 2.30 | 2.04 | 1050.0 | 0.6107 | | 2115 | 1.20 | 2.64 | 1.75 | 1 77 | 2.30 | 2.04 | 035 O | 0.6780 | | 2130 | 1.20 | 2.64 | 1.75 | 1 78 | 2.30 | 2.05 | 677.0 | 0.7010 | | 2145 | 1 20 | 2 64 | 1 96 | 1 79 | 2.30 | 2.05 | 504 O | 0.7188 | | 2200 | 1 20 | 2 64 | 1 94 | 1 80 | 2.30 | 2.05 | 193 O | 0.7388 | | 2230 | 1.20 | 2.64 | 1 96 | 1.80 | 2.30 | 2.05 | 949.0 | 0.7500 | | 2300 | 1.20 | 2 64 | 1.76 | 1 81 | 2.30 | 2.05 | 199 () | 0.7706 | | 2330 | 1 20 | 2.64 | 1.96 | 1 82 | 2.30 | 2.06 | 155.0 | 0.7700 | | 2400 | 1 20 | 2 64 | 1 96 | 1 82 | 2.30 | 2.06 | 100.0 | 0.7011 | | JULY19 | 1. 20 | L. U1 | 4. 70 | 1.02 | 2. 30 | 2.00 | 11 5. 0 | 0.0100 | | 0000 | 1 20 | 2 64 | 1 96 | 1 82 | 2 30 | 2.06 | 125.0 | 0 8108 | | 0300 | 1.20 | 2.64 | 1 96 | 1 82 | 2.30 | 2.06 | 62.0 | 0.8361 | | 0600 | 1.20 | 2 64 | 1.96 | 1 82 | 2.30 | 2.06 | 39.0 | 0.8600 | | 1200 | 1.20 | 2 64 | 1 96 | 1 82 | 2 30 | 2.06 | 20.0 | 0.8763 | | 1800 | 1. 20 | 2. 64
2. 64
2. 64
2. 64
2. 64
2. 64 | 1 96 | 1. 82 | 2.30 | 2.06 | 10.0 | 0.8844 | | 2400 | 1. 20 | 2.64 | 1. 95 | 1.82 | 2.30 | 2.06 | 6.4 | 0.8897 | | | | · | | | | | ••• | 0.00., | | 0000 | 1. 20 | 2. 64 | 1. 96 | 1. 82 | 2.30 | 2.06 | 5.4 | 0. 8897 | | 0600 | 1. 20
1. 20 | 2.64 | 1. 96 | 1.82 | 2.30 | 2.06 | 4.5 | 0.8933 | | 1200 | 1.20 | 2.64 | 1. 96 | 1.82 | 2 30 | 2.06 | 3.7 | 0.8964 | | 1800 | 1.20 | 2 44 | 1 94 | 1 82 | 2 30 | 2 06 | 3.0 | 0.8988 | | 2400 | 1. 20
1. 20
1. 20 | 2. 64
2. 64
2. 64
2. 64
2. 64 | 1. 94 | 1 82 | 2.30 | 2.06 | ; A | 0.8998 | | | | U-1 | | VE
 | | | . | | ## LAZYBROOK STREET STORM SEWER DRAINAGE BASIN The locations of data-collection sites in the Lazybrook Street Storm Sewer drainage basin are shown in figure 9. Weighted-mean rainfall for the 1984 water year was not determined. The storms of Mar. 23, July 5, and Aug. 5 were selected for analysis at station 08074400, Lazybrook Street Storm Sewer at Houston. Figure 9.-Locations of data-collection sites in and near the Lazybrook Street Storm Sewer drainage basin T'X-35 Rev. 5/80 UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY-TEXAS DISTRICT # ANNUAL STORM RAINFALL-RUNOFF SUMMARY DATA Table 7 .-- Storm rainfall-runoff data, 1984 Water Year, Lazybrook Street Storm Sewer | | 85% | | Rainfall | Rainfall (inches) | | | Ratio | Maximum | |---------------|------------------|-------------------|-------------------------------|---|------------|--------------------|-----------------------|--| | Date of Storm | Duration (hours) | Weighted
Total | Maximum incr
15-minute | Maximum Increment Recorded in Basin
15-minute 30-minute 60-minute | 60-minute | Runoff
(inches) | runoff to
rainfall | discharge $(\mathrm{ft}^{3}/\mathrm{s})$ | | i | | Lazybrook
([| Street Storm
Orainage Area | Lazybrook Street Storm Sewer at Houston, TX.
(Drainage Area 0.13 mi.2) | uston, TX. | | | | | Mar. 23, 1984 | 6.0 | 1.62 | 0.54 | 0.88 | 1.43 | 0.85 | 0.52 | 79 | | | | | | | | | | | | July 5, 1984 | 9.0 | 1.88 | 0.82 | 1.35 | 1.87 | 0.69 | 0.37 | 94 | | | | | | | | | | | | Aug. 5, 1984 | 1.4 | 1.39 | 0.28 | 0.52 | 0.90 | 0.82 | 65.0 | 105* | * - Peak Discharge for 1984 Water Year ## 08074400 LAZYBROOK STREET STORM SEWER AT HOUSTON, TX (Flood-hydrograph partial-record station) LOCATION.--Lat 29°48'15", long 95°26'04", Harris County, Hydrologic Unit 12040104, over a 54-inch storm sewer 30 ft north of the intersection of Lazybrook Street and West T. C. Jester Boulevard, Houston. DRAINAGE AREA .-- 0.13 mi2. ## WATER-DISCHARGE RECORDS PERIOD OF RECORD .-- October 1978 to current year. GAGE.--Flood-hydrograph and rainfall recorder. Datum of gage is -0.10 ft National Geodetic Vertical Datum of 1929, 1973 adjustment. REMARKS.--Records good. Additional storm rainfall-runoff data for this site can be obtained from the reports "Hydrologic Data for Urban Studies in the Houston, Texas Metropolitan Area." EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 119 ft³/s represents full storm sewer discharge and usually occurs many times annually, gage height, 58.09 ft. EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 85 ft 3/s and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |--------|------|-----------------------------------|---------------------| | July 5 | 1640 | 94 | 57.67 | | Aug. 5 | 1430 | *105 | 57.85 | ## WATER-QUALITY RECORDS PERIOD OF RECORD .-- Chemical, biochemical, and pesticide analyses: March 1980 to current year. | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS) | COLOR
(PLAT-
INUM-
COBALT
UNITS) | TUR-
BID-
ITY
(NTU) | OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) | HARD-
NESS
(MG/L
AS
CACO3) | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | |-------|------|---|---|--|------------------------------|--|--|--|--|--| | DEC | | | | | | | | | | | | 16-16 | 0645 | .97 | 156 | 40 | 6.6 | 7.2 | 42 | 0 | 14 | 1.7 | | FEB | | | 400 | 440 | | | | _ | 4.5 | | | 20 | 0830 | 3.3 | 130 | 140 | 64 | | 37 | 6
3 | 13 | 1.1 | | 20 | 0945 | 7.5 | 65 | 80 | 23 | | 20 | 3 | 6.8 | • 70 | | MAR | | | | | | | | | | | | 23 | 1930 | 32 | 162 | <1 | 26 | | | | | | | 23 | 1945 | 26 | 108 | 10 | 17 | | | | | | | 23 | 2000 | 60 | 60 | 10 | 20 | | | | | | | 23 | 2015 | 72 | 75 | 30 | 10 | | | | | | | 23 | 2030 | 30 | 163 | | | | | | | | | 23 | 2045 | 17 | 98 | 40 | 10 | | | | | | | JÜĹ | 2043 | ., | ,, | 40 | | | | | | | | 05-05 | 1605 | 11 | 84 | 55 | 15 | | 20 | 0 | 7.0 | .70 | | 06-06 | 0645 | .74 | | | 13 | | 20 | | 7.0 | .70 | | | | | | | | | | | | | | 10-10 | 1515 | . 9 0 | | | | | | | | | | AUG | | | | | | | | _ | | | | 05-05 | 1400 | 12 | 86 | 50 | 12 | | 20 | 0 | 6.4 | .90 | | | | | | | | | | | | | ## 08074400 LAZYBROOK STREET STORM SEWER AT HOUSTON, TX--Continued | DATE | SODIUM
DIS-
SOLVEI
(MG/I
AS NA | SOR
TI
RAT | D-
P-
ON SO
IO (1 | DTAS-
SIUM,
DIS-
DLVED
4G/L
S K) | ALKA
LINIT
FIEI
(MGA
AS | ry s
LD
/L | SULFA
DIS-
SOLV
(MG/
AS SO | ED
L | CHLO
RIDE
DIS-
SOLV
(MG/
AS C | ED
L | FLUO
RIDE
DIS
SOLV
(MG/
AS F | ED
L | ILICA
DIS-
SOLVE
(MG/L
AS
SIO2) | D : | SOLID
SUM O
CONST
TUENT
DIS
SOLV
(MG/ | F
I-
S,
ED | SOLII
RESII
AT 10
DEG.
SUS-
PENDE
(MG/ | DUÉ
C,
ED | |----------------|--|---|--|---|-------------------------------------|----------------------------------|--|----------------------------|--|----------------------------------|---|--|--|----------------------------|---|---------------------|--|-----------------| | DEC
16-16 | 14 | | 1 | 2.6 | | 43 | 12 | | 15 | | | 10 | 3. | 9 | | 89 | | 45 | | FEB
20 | 11 | | .8 | 2.1 | | 31 | | .3 | 17 | | ۲. | | 2. | | | 74 | | 306 | | 20
MAR | 3.9 | | •4 | 2.4 | | | 9 | .0 | 4. | | ۲. | | 2. | | | 40 | | 114 | | 23
23 | - | -
- | | | | | | | | | | | - | - | | | 1 | 23 | | 23
23 | | - | | | | | | | | | | | | - | | | | 38
76 | | 23
23 | | . - | | | | | | | | | |
 | | - | | | | 44 | | JUL
05-05 | 8.7 | | .9 | 2.4 | | 24 | g | 1.1 | 6. | | | 10 | 2. | | | 51 | | 62 | | 06-06
10-10 | - | -
- | | | | | - | | | | |
 | | _ | | | | | | AUG
05-05 | 9.8 | | 1 | 2.1 | | 28 | 7 | •5 | 7. | 1 | ۲. | 10 | 3. | 0 | | 54 | | 35 | | ı | DATE | SOLIDS,
VOLA-
TILE,
SUS-
PENDED
(MG/L) | NITRO
GEN,
NITRAT
TOTAI
(MG/I
AS N) | TE NIT | TRO-
EN,
RITE
TAL
IG/L | | AL
/L | GI
AMMO
TO
(Mo | TRO-
EN,
ON IA
TAL
G/L
N) | GI
ORGA
TO:
(M) | TRO-
EN,
ANIC
TAL
G/L
N) | NITI
GEN, A
MONIA
ORGAL
TOTA
(MG,
AS 1 | AM-
A +
NIC
AL
/L | PHON
TOT
(MC | OS-
RUS,
FAL
G/L
P) | ORG
TO
(M | BON,
ANIC
TAL
G/L
C) | | | | EC
16-16 | 12 | . 2 | :0 | .200 | | .40 | | .430 | , | 1.1 | 1. | . 5 | | . 540 | | 12 | | | | EB
20 | 114 | | < | .010 | | .40 | | .040 | | 3.1 | | . 1 | | .6 8 0 | | 2 8 | | | 2 | 20
AR | 33 | . 5 | | .010 | | .60 | | .540 | | 1.6 | 2 | | | 640 | | 15 | | | | 23
23 | 132
55 | .3 | | .190
.030 | | .50
.60 | | .10
.650 | | 5.9
2.5 | | .0 | | .40
.770 | | 34
16 | | | 2 | 23 | 43 | - | · - < | .010 | | .80 | | .8 70 | 1 | 1.4 | 2 . | . 3 | | 700 | | 12 | | | | 23
23 | 41 | .4 | .9
. - | .010 | | .50 | • | .510 | 1 | 1.4 | 1. | .9 | • | 640 | | 9.8 | | |
2 | 23
JL | 30 | .8 | 8 | .020 | | .90 | • | . 560 | 1 | 1.0 | 1. | . 6 | • | 840 | | 11 | | | (| 05-05
06-06 | 23 | .6 | | .030 | | .70 | | 470 | 1 | 1.0 | 1. | 5 | | 650 | | 12 | | | i | 10-10 | | | . - | | | | | | | | | | | | | | | | | JG
05 - 05 | 12 | .4 | .7 | .030 | | .50 | 4 | .130 | 1 | 1.3 | 1. | . 4 | | 510 | | 9.4 | | | | | DATE | TIME | 0
S0
: (U | ENIC
IS-
LVED
G/L
AS) | BARI
DIS
SOLV
(UG
AS | ED | D1
SOI
(U) | MIUM
IS-
LVED
G/L
CD) | (UC | JM, | COPPE
DIS-
SOLV
(UG/
AS (| /ED
/L | SOI
(UC | ON,
IS-
LVED
G/L
FE) | | | | | | | JUL
05-05
06-06
10-10 | 1605
0645
1515 | | <1
<1
<1 | < | 19
100
100 | | <1
<1
<1 | | 20
<10
<10 | | 4
3
3 | | 100
20
40 | | | | | | | AUG
05-05 | 1400 | 1 | 1 | | 25 | | <1 | | <10 | | 3 | | 79 | | | | | | | | | LEAD,
DIS-
SOLVED
(UG/L | NE
D
SO
(U | NGA-
SE,
DIS-
DLVED | D
SO
(U | CURY
IS-
LVED
G/L | NI
D
SO
(U | LE-
UM,
IS-
LVED
G/L | SOI
(U) | IS-
LVED
G/L | (UG | S-
Ved
/L | | | | | | | | | | AS PB) | AS | MN) | AS | HG) | AS | SE) | AS | AG) | AS | 4N) | | | | | | | | 0 | JL
05-05
06-06
0-10 | 5
5
3 | | 16
<10
<10 | | <.1
.1
.1 | | <1
<1
<1 | | <1
<1
<1 | | 210
220
1 8 0 | | | | | | | | | IG
)5-05 | 6 | | 2 | | <.1 | | <1 | | <1 | | 140 | | | | | ## STORM RAINFALL AND RUNOFF 08074400 LAZYBROOK STREET STORM SEWER AT HOUSTON, TEX | DATE | ACCUMU- | ACCUMU | DISCHARGE | ACCUMU- | |---------------------------------------|----------------|--|--|--| | AND | LATED | LATED | | LATED | | TIME | RAIN- | WEIGHTED | | RUNDFF | | 1 4114 | | RAINFALL | | 11071071 | | | AT | WATER SEE | | | | | GAGE | | (CUBIC | | | | 4400 | | FEET | | | | 4400 | | | | | | | | PER | 4 * 5 104 1000 5 | | | (INCHE2) | (INCHES) | SECOND) | (INCHES) | | 900 this two son son with the tigh to | | gi apig sen was was was sup apig mas was wat wat | عدد مين بينه مده العدد المال العدد ا | i tindir quasa majas kanta tindir tindir majar maja tindir dilinir samin dilinir tindir tindir | | | STORM | OF MAR. 23 | 3, 1984 | | | MAR. 23 | | | | | | 0000 | 0. 0 | O. O | 0. 1 | 0. 00 36 | | 0600 | 0. 0 | 0 . 0 | 0. 1 | 0. 0107 | | 1200 | O. O | O. O | 0. 2 | 0. 0250 | | 1800 | O. O | 0. 0 | O. 1 | 0. 0294 | | 1915 | 0. Q | Q. Q | 0. 1 | 0. 0301 | | 1920 | 0. 10 | 0. 10 | 0. 1 | 0. 0302 | | 1925 | 0. 20 | 0. 20 | 2. 9 | 0. 0331 | | 1930 | 0. 30 | 0. 30 | 32. 0 | 0. 0649 | | 1935 | 0. 38
0. 38 | 0. 38 | 33. O | 0. 0977 | | | | | | | | 1940 | 0.46 | 0.46 | 29. 0 | 0. 1265 | | 1945 | 0. 55 | 0. 55 | 26. 0 | 0. 1523 | | 1950 | 0. 66 | 0. 66 | 33. 0 | 0. 1851 | | 1955 | 0. 77 | 0. 77 | 46. 0 | 0. 2308 | | 2000 | 0. 89 | 0. 89 | 60. Q | 0. 2904 | | 2005 | 1. 07 | 1.07 | 79. Q | O. 3689 | | 2010 | 1. 25 | 1. 25 | 79. O | 0. 4473 | | 2015 | 1.43 | 1. 43 | 72. O | 0. 5189 | | 2020 | 1.43 | 1.43 | 54. O | 0. 5725 | | 2025 | 1.44 | 1.44 | 40. Q | 0. 6122 | | 2030 | 1.45 | 1.45 | 30. O | 0. 6420 | | 2035 | 1.47 | 1.47 | 22. 0 | 0. 66 39 | | 2040 | 1. 49 | 1.49 | 18. 0 | 0. 6818 | | 2045 | 1.51 | 1.51 | 17. 0 | 0. 6987 | | 2050 | 1. 53 | 1. 53 | 16. 0 | 0. 7145 | | 2055 | 1. 56 | 1. 56 | 15. 0 | 0. 7294 | | 2100 | 1. 59 | 1. 59 | 14. 0 | 0. 7434 | | 2105 | 1.60 | 1.60 | 13. 0 | 0. 7563 | | 2110 | 1.61 | 1.61 | 11.0 | 0. 7672 | | 2115 | 1. 62 | 1.62 | 9. 3 | 0. 7872
0. 7857 | | 2130 | 1.62 | | 7. 3
5. 4 | 0. 8098 | | | | 1.62 | | | | 2200 | 1.62 | 1.62 | 2. 5 | 0.8322 | | 2300 | 1.62 | 1.62 | 1.0 | 0.8441 | | 2400 | 1. 62 | 1. 62 | 0. 5
 | 0. 8471 | STORM RAINFALL AND RUNOFF 08074400 LAZYBROOK STREET STORM SEWER AT HOUSTON, TEX. --CONTINUED | DATE | ACCUMU- | ACCUMU- | DISCHARGE | ACCUMU- | |-------|-------------------|---|-------------------|------------------| | AND | LATED | LATED | | LATED | | TIME | RAIN- | WEIGHTED | | RUNOFF | | | FALL | RAINFALL | | | | | AT | *************************************** | | | | | GAGE | | (CUBIC | | | | 4400 | | FEET | | | | 7700 | | PER | | | | / TNCHEC \ | / TNCHER \ | SECOND) | / TNOUED \ | | | (TMCUE2) | (INCHES) | SECOND! | (INCHES) | | | | | ~ | | | | STORM | OF JULY 5 | , 1984 | | | JULY5 | | | | | | 0000 | | O. O | O. 1 | | | 0600 | O. O | O. O | | | | 1200 | O. O | O. O | | 0.0167 | | 1600 | O. O | Q. O | O. 1 | 0. 0191 | | 1605 | 0.14 | 0.14 | O. 1 | 0. 0192 | | 1610 | 0. 28 | 0. 28 | O. 1 | 0. 01 93 | | 1615 | 0. 43 | 0. 43 | 1. 9 | 0.0212 | | 1620 | 0. 70 | 0. 70 | 24. 0 | O. 0 45 0 | | 1625 | 0. 9 7 | 0. 97 | 4 0. 0 | 0. 0848 | | 1630 | 1. 25 | 1. 25 | 5 6. 0 | O. 1404 | | 1635 | 1. 42 | 1. 42 | 81 . 0 | 0. 2209 | | 1640 | | 1.60 | 94 . 0 | 0. 3142 | | 1645 | | 1. 78 | 9 2. 0 | 0. 4056 | | | 1.81 | 1.81 | 77. O | 0. 4821 | | 1655 | 1.84 | 1.84 | 5 6. 0 | O. 5377 | | 1700 | 1.87 | 1.87 | 38. O | O. 5755 | | 1705 | 1.87 | 1.87 | 25 . 0 | 0. 6003 | | 1710 | 1.87 | 1.87 | 17. O | 0. 6172 | | 1715 | 1.88 | 1.88 | 12.0 | 0. 6410 | | 1730 | 1.88 | 1.88 | 4. 7 | 0. 6621 | | 1800 | 1.88 | 1.88 | 1.4 | 0. 6787 | | 1930 | 1.88 | 1.88 | 0. 3 | 0. 6841 | | 2100 | 1.88 | 1.88 | 0. 2 | 0. 6895 | | 2400 | 1.88 | 1.88 | 0. 1 | 0. 6913 | | | | | | | ## STORM RAINFALL AND KUNDFF 08074400 LAZYBROOK STREET STORM SEWER AT HOUSTON, TEX --CONTINUED | DATE
AND
TIME | ACCUMU-
LATED
RAIN-
FALL
AT | ACCUMU-
LATED
WEIGHTED
RAINFALL | DISCHARGE | ACCUMU-
LATED
RUNOFF | |-------------------------|---|--|-----------------------|---------------------------------| | | GAGE
4400 | | (CUBIC
FEET
PER | | | | (INCHES) | (INCHES) | SECOND) | (INCHES) | | *** *** *** *** *** *** | STORM | OF AUG. 5 | , 1984 | | | AUG. 5 | | | | | | 0000 | 0. 0 | O. O | 0. 2 | 0. 0072 | | 0600 | O. O | 0. 0 | 0. 2 | 0. 0215 | | 1200 | O. O | 0. 0 | O. B | 0. 0548 | | 1300 | 0. 0 | 0. 0 | 0. 2 | 0. 0572 | | 1400 | 0. 0 | 0. 0 | 0. 1 | 0. 0580 | | 1415 | 0. 0 | 0. 0 | 0. 1 | 0. 0582 | | 1420
1425 | 0. 06
0. 13 | 0. 06
0. 13 | 0. 4
48. 0 | 0. 0586
0. 1062 | | 1425 | 0. 2 0 | | 105. O | 0. 2105 | | 1435 | 0. 29 | 0. 20
0. 29 | 102. 0 | 0. 3119 | | 1440 | 0. 38 | 0. 38 | 99. O | 0. 4102 | | 1445 | 0.48 | O. 48 | 93. 0 | 0. 5026 | | 1450 | 0. 56 | 0. 56 | 81.0 | 0. 5830 | | 1455 | 0. 64 | 0. 64 | 61.0 | 0. 6436 | | 1500 | 0.72 | 0. 72 | 41. 0 | 0. 6844 | | 1505 | 0. 78 | O. 78 | 28. O | 0.7122 | | 1510 | 0.84 | O. 84 | 20 . 0 | 0. 7320 | | 1515 | 0. 90 | 0. 90 | 15 . 0 | 0. 7469 | | 1520 | 0. 95 | 0. 95 | 11. O | 0. 7 5 79 | | 1525 | 1. 01 | 1. 01 | 8. O | 0. 7658 | | 1530 | 1. 07 | 1. 07 | 6. 3 | 0. 7721 | | 1535 | 1.11 | 1. 11 | 4. 9 | 0. 7769 | | 1540 | 1.15 | 1. 15 | 4. 0 | 0. 7 80 9 | | 1545 | 1.20 | 1.20 | 3. 1 | 0. 7840 | | 1550 | 1. 24 | 1.24 | 2. 7 | 0. 7867 | | 1555
1600 | 1. 28
1. 32 | 1. 28
1. 32 | 2. 2
1. 9 | 0. 7888
0. 7907 | | 1605 | 1.34 | 1. 32
1. 34 | 1.6 | 0. 7 9 07
0. 7923 | | 1610 | 1.34 | 1. 34 | 1.4 | 0. 7923
0. 7937 | | 1615 | 1. 39 | 1. 39 | 1. 2 | 0. 80 6 8 | | 1800 | 1. 37 | 1. 37 | 0.3 | 0. 820 7 | | 2400 | 1. 39 | 1. 39 | 0. 1 | 0. 8243 | | | | | | | TX-35 Rev. 5/80 UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY-TEXAS DISTRICT # ANNUAL STORM RAINFALL-RUNOFF SUMMARY DATA Table 8. -- Storm rainfall-runoff data, 1984 Water Year, Whiteoak Bayou | | 85% | | Rainfall | Rainfall (inches) | | | Ratio | Maximum | |------------------|---------------------
-------------------|-------------------------------|--|--------------------------|--------------------|--------------------|----------------------| | Date of Storm | Duration
(hours) | Weighted
Total | Maximum Incr
15-minute | ement Record | ed in Basin
60-minute | Runoff
(inches) | runoff to rainfall | discharge (ft^3/s) | | | | MW | iteoak Bayou
Drainage Area | Whiteoak Bayou at Houston, TX.
(Drainage Area 86.3 mi. ²) | TX.
2) | | | | | Mar. 23-25, 1984 | 1.5 | 0.73 | 0:30 | 0.59 | 1.15 | 0.34 | 0.47 | 2830 | | | | | | | | | | | | June 6-8, 1984 | 2.0 | 1.53 | 0.71 | 1.41 | 1.66 | 0.42 | 0.28 | 3830* | ٠ | : | | | | | | | - | | | | | | | | | | | | | | | * - Peak Discharge for 1984 Water Year ## 08074500 WHITEOAK BAYOU AT HOUSTON, TX LOCATION.--Lat 29°46'30", long 95°23'49", Harris County, Hydrologic Unit 12040104, at downstream side of downstream bridge on Heights Boulevard in Houston, 560 ft downstream from Texas and New Orleans Railroad Co. bridge, 2.4 mi upstream from Little Whiteoak Bsyou, and 4.0 mi upstream from mouth. DRAINAGE AREA. -- 86.3 mi². Prior to Oct. 1, 1976, 84.7 mi². ## WATER-DISCHARGE RECORDS PERIOD OF RECORD, -- May 1936 to current year (October 1965 to September 1966, monthly discharge only). REVISED RECORDS. -- WSP 1732: Drainage area. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 7.35 ft below National Geodetic Vertical Datum of 1929; unadjusted for land-surface subsidence. Apr. 28, 1965, water-stage recorder at site 480 ft upstream at same datum. REMARKS.--Water-discharge records fair. Low flow is partly sustained by industrial waste. No diversion above station. AVERAGE DISCHARGE.--48 years, 83.9 ft³/s (60,790 acre-ft/yr). EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 17,300 ft 3/s Mar. 20, 1972 (gage height, 43.50 ft); maximum gage height, 43.60 ft Nov. 13, 1961; no flow for many days during 1965 water year (result of construction dams). EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1919, 51.5 ft Dec. 9, 1935, prior to channel rectification, present site and datum (discharge, 14,750 ft³/s), furnished by the engineer for Harris County. The flood of May 31, 1929, reached a stage of 47.0 + 0.5 ft, prior to channel rectification, present site and datum (discharge, 9,360 ft³/s), computed on basis of current-meter measurement at stage 1.0 ft below crest, furnished by city of Houston. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 3,830 ft³/s June 6 at 1400 hours (gage height, 26.31 ft), no peak above base of 4,000 ft³/s; minimum daily, 28 ft³/s Sept. 28, 29. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 | | | | | | | MEAN VALU | ES | | | | | | |----------------------------------|----------------------------------|----------------------------|----------------------------------|----------------------------------|------------------------|----------------------------------|----------------------------|----------------------------------|----------------------------|-------------------------------------|----------------------------------|----------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 44 | 210 | 38 | 38 | 39 | 47 | 41 | 39 | 32 | 124 | 29 | 50 | | 2 | 43 | 69 | 41 | 40 | 52 | 42 | 68 | 38 | 32 | 62 | 243 | 461 | | 3 | 44 | 35 | 289 | 37 | 83 | 42 | 76 | 37 | 31 | 109 | 230 | 93 | | 4 | 41 | 48 | 97 | 40 | 43 | 43 | 52 | 35 | 33 | 42 | 145 | 43 | | 5 | 39 | 179 | 41 | 39 | 37 | 130 | 42 | 36 | 70 | 378 | 418 | 38 | | 6 | 38 | 662 | 38 | 38 | 36 | 46 | 45 | 34 | 724 | 116 | 163 | 38 | | 7 | 37 | 156 | 32 | 38 | 34 | 41 | 52 | 84 | 180 | 83 | 145 | 133 | | 8 | 37 | 52 | 32 | 40 | 35 | 39 | 127 | 158 | 80 | 89 | 43 | 45 | | 9 | 38 | 67 | 37 | 1000 | 213 | 38 | 55 | 32 | 50 | 201 | 40 | 37 | | 10 | 38 | 44 | 98 | 250 | 65 | 39 | 42 | 33 | 40 | 92 | 218 | 36 | | 11 | 38 | 40 | 182 | 71 | 47 | 38 | 41 | 36 | 45 | 173 | 116 | 34 | | 12 | 52 | 38 | 45 | 50 | 918 | 150 | 40 | 36 | 45 | 192 | 150 | 35 | | 13 | 38 | 35 | 37 | 49 | 211 | 771 | 42 | 36 | 40 | 111 | 58 | 35 | | 14 | 35 | 35 | 36 | 48 | 110 | 142 | 47 | 35 | 35 | 72 | 72 | 35 | | 15 | 34 | 35 | 34 | 66 | 69 | 84 | 38 | 34 | 32 | 71 | 106 | 98 | | 16 | 58 | 33 | 178 | 44 | 56 | 60 | 44 | 36 | 32 | 36 | 38 | 144 | | 17 | 159 | 33 | 59 | 42 | 50 | 50 | 45 | 296 | 32 | 30 | 33 | 40 | | 18 | 48 | 34 | 37 | 41 | 48 | 46 | 43 | 143 | 40 | 547 | 35 | 30 | | 19 | 35 | 59 | 34 | 40 | 42 | 148 | 42 | 745 | 35 | 502 | 32 | 29 | | 20 | 36 | 44 | 36 | 50 | 816 | 71 | 44 | 392 | 32 | 55 | 33 | 31 | | 21 | 51 | 34 | 80 | 41 | 363 | 44 | 42 | 123 | 32 | 61 | 34 | 240 | | 22 | 36 | 54 | 37 | 38 | 139 | 41 | 39 | 65 | 35 | 43 | 49 | 222 | | 23 | 35 | 147 | 37 | 576 | 92 | 350 | 37 | 39 | 32 | 31 | 34 | 57 | | 24 | 35 | 48 | 37 | 226 | 58 | 361 | 40 | 37 | 35 | 217 | 253 | 71 | | 25 | 35 | 33 | 40 | 103 | 50 | 79 | 41 | 34 | 32 | 436 | 75 | 51 | | 26
27
28
29
30
31 | 34
34
37
45
36
76 | 33
62
39
35
55 | 45
65
45
40
38
40 | 65
52
46
43
44
39 | 138
122
63
50 | 57
55
46
43
44
41 | 42
40
37
37
38 | 32
31
33
37
31
32 | 31
30
32
31
66 | 73
167
393
132
36
30 | 39
38
62
38
34
43 | 34
30
28
28
29 | | TOTAL | 1386 | 2448 | 1925 | 3334 | 4079 | 3228 | 1419 | 2809 | 1996 | 4704 | 3046 | 2275 | | MEAN | 44.7 | 81.6 | 62.1 | 108 | 141 | 104 | 47.3 | 90.6 | 66.5 | 152 | 98.3 | 75.8 | | MAX | 159 | 662 | 289 | 1000 | 918 | 771 | 127 | 745 | 724 | 547 | 418 | 461 | | MIN | 34 | 33 | 32 | 37 | 34 | 38 | 37 | 31 | 30 | 30 | 29 | 28 | | AC-FT | 2750 | 4860 | 3820 | 6610 | 8090 | 6400 | 2810 | 5570 | 3960 | 9330 | 6040 | 4510 | | CAL YR
WTR YR | | | MEAN
MEAN | 188 MA
89.2 MA | | MIN 31
MIN 28 | AC-FT
AC-FT | 135800
64760 | | | | | ## 08074500 WHITEOAK BAYOU AT HOUSTON, TX--Continued ## WATER-QUALITY RECORDS PERIOD OF RECORD. -- Chemical, biochemical, and pesticide analyses: October 1968 to current year. | DATE | TIM | S
I
E T | TREAM-
FLOW,
NSTAN-
ANEOUS
(CFS) | SPE
CIF
CON-
DUC
ANC:
(UMH | IC
T-
E | PH
(STAND-
ARD
JNITS) | TEMPE
ATUR
(DEG | R-
E | COLOR
(PLAT
INUM-
COBAL
UNITS | `-
.T | TUR-
BID-
ITY
(NTU) | OXYGI
DI:
SOL
(MG, | EN,
S-
/ED | DXYGER
DIS-
SOLVI
(PER-
CENT
SATUI
ATION | - DE
ED I
- (| YGEN
EMAND,
BIO-
CHEM-
ICAL,
DAY
(MG/L) | COLI-
FORM
FECA:
0.7
UM-MI
(COLS | ,
L,
F
•/ | STREP-
TOCOCCI
FECAL,
KF AGAR
(COLS.
PER
100 ML) | |-----------------------------|-------------------------------------|---|--|--|--|--|--|---|---|--|---|---|-----------------------------------|--|--|---|---|--------------------|--| | FEB
07 | 114 | 5 | 31 | | 911 | 7.8 | 13 | .5 | < | 1 | 7.8 | 13 | .0 | 12 | 23 | 4.3 | | 48 | K14 | | MAR
23
23
23
24 | 200
203
220
130 | 5
5 | 173
2070
2310
233 | 3 | 270
225
1 8 0
350 | 8.6
8.3
7.8
8.0 | 23
20
19
20 | .0
.5 | 110
56
56
56 | 0 : | 180
200
78
180 | 8 | 7.7
3.3
3.4
3.2 | 9 | 90
91
92
90 | 19
17
17
8.7 | 7000
3100
4100
2500 | 00 | 150000
160000
260000
65000 | | JUL
02 | 113 | 0 | 77 | (| 530 | 8.3 | 28 | .5 | 2 | 5 | 6.9 | 1 1 | •2 | 14 | 44 | 4.4 | 770 | 00 | 6700 | | AUG
06 | 105 | 0 | 125 | 3 | 344 | 7.8 | 28 | .5 | 7 | 0 | 130 | 8 | 3.4 | 10 | 8 | 4.8 | 1300 | 00 | 1400 | | DATE | HARD
NESS
(MG/I
AS
CACO | -
N
L B | HARD-
NESS,
ONCAR-
ONATE
(MG/L
CACO3) | CALC:
DIS-
SOLV
(MG:
AS (| -
VED
VL | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIU
DIS-
SOLVE
(MG/
AS N | M,
D
L | SODIU
AD-
SORP-
TION
RATIO | | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | LINI?
FIEI | Y
D
L | SULFAT
DIS-
SOLVE
(MG/I
AS SO4 | re f
Ed s | CHLO-
RIDE,
DIS-
SOLVED
MG/L
S CL) | FLUO-
RIDE,
DIS-
SOLVE
(MG/I
AS F) | ED
L | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | | FEB
07 | 22 | 20 | 0 | 66 | • | 13 | 110 | | 3 | | 5.5 | 2 | 60 | 30 | 1 | 10 | • 5 | 50 | 19 | | MAR
23 | | 72 | 0 | 23 | | 3.5 | 26 | | 1 | | 2.6 | | 77 | 17 | | 25 | .2 | | 6.2 | | 23
23
24 | | 52 | 0 | 17 | | 2.4 | 15 | | : | 9 | 3.4 | | 54 | 13 | · - | 14 | •2 | 0 | 4.8 | | JՄL
02 | 1: | 50 | 0 | 47 | | 7.5 | 75 | | 3 | | 6.4 | 1 | 70 | 24 | | 75 | •3 | 30 | 20 | | AUG
06 | 9 | 96 | 0 | 31 | | 4.5 | 33 | | 2 | | 4.4 | 1 | 00 | 19 | | 28 | •3 | 30 | 12 | | | DATE | SOLI
SUM
CONS
TUEN
DI
SOL
(MG | OF RITI- ATTS, DIS- | OLIDS,
ESIDUE
105
EG. C,
SUS-
ENDED
(MG/L) |
SOLI
VOL
TII
SUS
PENE
(MG | A-
LE, NI
S- DED | IITRO-
GEN,
TRATE
TOTAL
(MG/L
AS N) | NITE
GEN
NITE
TOTA
(MG)
AS I | N,
ITE
AL
/L | NITE
GEI
NO2+I
TOTA
(MG:
AS I | N,
NO3 A
AL
/L | NITRO-
GEN,
MMONIA
TOTAL
(MG/L
AS N) | GI
ORG <i>i</i>
TO:
(MC | EN, | NITR
GEN, A
MONIA
ORGAN
TOTA
(MG/
AS N | M-
HC PI
L H | PHOS-
HORUS,
FOTAL
(MG/L
AS P) | ORG
TO | RBON,
GANIC
DTAL
IG/L
G C) | | | EB
07
IAR | | 510 | 3 | | <2 | 3 .8 | .2 | 230 | 4 | .0 | .710 | 1 | 1.7 | 2. | 4 | 4.40 | | 6.8 | | | 23
23
23
24 | | 150
100 | 766
710
270
256 | | 140
118
66
68 | .74
.54
1.2
.95 | .(| 060
060
090
150 | 1 | .80
.60
.3 | .950
.580
.250
.670 | 2 | 1.9
1.0
1.4 | 2.
1.
2.
2. | 6
6 | 1.40
.830
3.00
1.80 | | 30
26
26
17 | | | 02
UG | : | 360 | 6 | | 6 | 2.2 | . 1 | 80 | 2 | . 4 | .400 | 1 | .2 | 1. | 6 | 2.90 | | 8.7 | | | 06 | | 190 | 120 | | 22 | 1.4 | •1 | 160 | 1 | . 6 | .190 | 1 | 1.6 | 1. | 8 | 2.20 | | 10 | | | | | | DATE | ΤI | ME (| SENIC
DIS-
SOLVED
(UG/L
(S AS) | BARIU
DIS-
SOLVE
(UG/
AS E | ED
/L | CADMI
DIS
SOLV
(UG | IUM
S-
/ED
/L | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | S O I | PER,
S-
VED
G/L
CU) | IRON
DIS
SOLV
(UG/
AS F | ED
L | | | | | | | | | UL
02 | 11 | 30 | 11 | 1 | 80 | | < 1 | <10 | | 7 | | 22 | | | | | | | | | UG
06 | 10 | 50 | 9 | 1 | 140 | | <1 | <10 | | 4 | | 43 | | | | | | | | | JU
O
AU | 2
G | | NES
DI
SOI
(UC
AS | IS-
LVED
G/L
MN) | | S-
VED
/L
HG) | | SIL DED SOL (UE) AS | VER,
IS-
LVED
G/L
AG) | SOL
(UG | S-
VED
3/L
ZN) | | | | | | | | | | 0 | 6 | | 1 | 2 | | <.1 | | <1 | <1 | | 10 | | | | | ## 08074500 WHITEOAK BAYOU AT HOUSTON, TX--Continued | DATE | TIME | AME-
TRYNE
TOTAL | ATRA-
ZINE,
TOTAL
(UG/L) | CYAN-
AZ INE
TOTAL
(UG/L) | METHO-
MYL
TOTAL
(UG/L) | PROME-
TONE
TOTAL
(UG/L) | PROME-
TRYNE
TOTAL
(UG/L) | PRO-
PAZINE
TOTAL
(UG/L) | PROPHAM
TOTAL
(UG/L) | SEVIN,
TOTAL
(UG/L) | SIMA-
ZINE
TOTAL
(UG/L) | SIME-
TRYNE
TOTAL
(UG/L) | |-----------|------|------------------------|-----------------------------------|------------------------------------|----------------------------------|-----------------------------------|------------------------------------|-----------------------------------|----------------------------|---------------------------|----------------------------------|-----------------------------------| | JUL
02 | 1130 | <.10 | .20 | <.10 | <2.0 | 2 | <.1 | <.10 | <2.0 | <2.0 | <.10 | <.1 | | AUG
06 | 1050 | <.10 | 1.7 | <.10 | <2.0 | .6 | <.1 | <.10 | <2.0 | <2.0 | <.10 | <.1 | STORM RAINFALL AND RUNDFF OB074500 WHITEDAK BAYDU AT HOUSTON, 11:X. | AND | LATED
RAIN-
FALL | LATED
RAIN-
FALL | RAIN-
FALL | RAIN-
FALL
AT | RAIN-
FALL | LATED
RAIN-
FALL | LATED
RAIN ·
FALL | LATED
RAIN-
FALL | RAIN-
FALL | LATED
WEIGHTED
RAINFALL | | LATED | |---------|------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------------------------|-------------------------|-------------------------------|----------------------------------|----------| | | GAGE
4400
(INCHES) | GAGE
4250
(INCHES) | GAGE
4200
(INCHES) | GAGE
4150
(INCHES) | GAGE
4145
(INCHES) | GAGE
205R
(INCHES) | GAGF
204R
(INCHES) | GAGE
22R
(INCHES) | GAGE
21R
(INCHES) | (INCHES) | (CUBIC
FEET
PER
SECOND) | (INCHES) | | | | | | | i | | | | | | | | | CC GVM | | | | | STORM OF | MAR. 23-25, 1984 | , 1984 | | | | | | | 0000 | | | | | | | - | 0 | | ٠. | | 0.0024 | | 0090 | 0.0 | | ٠. | 0.0 | | | | 0.0 | 0.0 | 0.0 | 42.0 | | | 1200 | 0.0 | 0.0 | 0
0 | 0.0 | 0.0 | o | 0.0 | o .
O | o
o | o .o | | 0.0114 | | 1730 | | | | | | | | | | | | | | 1800 | | | o (| | | | | | | | | 0.0139 | | 1830 | 0 0 | | | | - | | | 0.27 | 0 0 | 0.00 | 40.0 | 0.0143 | | 000 | | | | | | | 0.0 | | | | | 0.0146 | | 2 9 | 9 8 | | | | | | | | 9 6 | | 4
5
0
0 | 0.0100 | | | | 1 .
0 . | | | | | | | | | | 0.0100 | | | | | 9 6 | | | | | | | | | 0.0312 | | 3 6 | | | | | | | 3 S | | | | 20.00 | 0.000 | | 0000 | | | | | | | | | | | | | | 2 6 |
. 0
. 1
. 0
. 1 | 1400.0 | | | 2400 | | | | | | | i c | | - | | | | | MAR. 24 | | 0 | | | | | | | | | | | | 0000 | 1. 62 | | | | | | 0. 55 | | 0. 56 | | 1120.0 | | | 0200 | 1.62 | | | | | | | | | | | | | 0330 | | | | | | | | | | | | | | 0200 | 1. 62 | 0. 65 | 96 .0 | 0. 60 | 0. 70 | 0.77 | o. 55 | 0. 42 | 0. 36 | 0. 73 | 542.0 | 0.2310 | | 0090 | • | | 96 .0 | | | | | | | | | | | 0230 | | | | | | | | | | | | | | 0830 | | | | | | | | | 0. 36 | | | | | 1000 | | | | | | | | | | | _ | | | 1200 | 1.62 | | | | | | | | | | | | | 1630 | 1. 62 | • | | | | | | | _ | | | | | 1800 | • | • | | | | | | | | | | | | 2300 | 1.62 | | D . | | | | | | 0. 56 | | 145.0 | 0.3065 | | 2400 | 1. 62 | • | 0. 9 6 | | | | 0
0 | | | | _ | | | 0000 | 1.62 | 0.65 | | 04 0 | | | | | 0
40 | | 0 041 | | | 0300 | 62 | | | | | | | | | | | | | 0090 | | | | | | | | | | | | | | 0060 | | | | | | | | | | | 20.02 | | | 500 | 1.62 | 0.65 | 96 0 | 09.0 | 0.70 | 0.77 | 33 | 0.4 | 0.36 | 0.73 | 65.0 | 0.3310 | | 800 | | | | | | | | | | | 68.0 | | | | | | | | | | | | | | | | | AND KUNUST | | |------------|----------| | | TEX. | | RAINFALL | HOUSTON, | | ことこの | ΑT | | 'n | BAYOU | | | WHITEDAK | | | 08074500 | | Colored Calculus | 1 | |--|-------------------------| | ### AT | D LATED RAIN- FALL | | CINCHES CINC | | | FTORM OF JUNE 6 -8 , 1984 0.00 0.0 | (INCHES) (INCHES) (INCH | | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | | | 6.0 0.0
0.0 <td>0 0</td> | 0 0 | | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 0.0 | | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 0.0 | | 43 0.21 0.72 0.04 0.34 34.0 44 0.21 0.72 0.04 0.34 34.0 45 0.34 1.74 1.13 0.64 1.34 2650.0 79 0.34 1.74 1.21 0.64 1.34 2650.0 97 0.47 1.24 0.74 1.45 2650.0 97 0.47 1.24 0.74 1.49 2650.0 98 0.47 1.24 0.74 1.49 2650.0 99 0.47 1.28 0.77 1.49 1240.0 90 0.52 1.67 1.28 0.77 1.49 1280.0 90 0.53 1.67 1.28 0.77 1.49 1280.0 90 0.53 1.67 1.28 0.77 1.49 1280.0 90 0.53 1.67 1.28 0.77 1.49 1280.0 90 0.53 1.67 1.28 < | 0.0 | | 66 0.30 1.64 0.90 0.47 0.95 772.0 0.95 772.0 0.95 772.0 0.95 772.0 0.95 772.0 0.95 0.44 1.21 0.64 1.38 3890.0 0.00 | 0. 12 0. 12 | | 97 0.34 1.70 1.13 0.61 1.23 1410.0 0.0 98 0.41 1.76 1.21 0.64 1.23 1410.0 0.0 95 0.44 1.87 1.27 0.74 1.47 2650.0 0.0 97 0.47 1.87 1.28 0.77 1.47 2650.0 0.0 02 0.52 1.87 1.28 0.77 1.49 1840.0 0.0 02 0.53 1.87 1.28 0.77 1.49 1840.0 0.0 02 0.53 1.87 1.28 0.77 1.49 1840.0 0.0 02 0.53 1.87 1.28 0.77 1.49 1840.0 0.0 02 0.53 1.87 1.28 0.77 1.49 1840.0 0.0 02 0.54 1.87 1.28 0.77 1.49 1840.0 0.0 02 0.55 1.87 1.28 < | . 32 0. 36 1. | | 95 0. 44 1. 17 1. 12 1. 0. 64 1. 134 3830.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | 72 | | 95 0.44 1.65 1.21 0.68 1.41 3490.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 48 0.84 1. | | 99 0.47 1.65 1.27 0.74 1.45 3150.0 0 02 0.49 1.87 1.27 0.77 1.49 2550.0 0 02 0.52 1.87 1.28 0.77 1.49 1850.0 0 02 0.52 1.87 1.28 0.77 1.49 1850.0 0 02 0.53 1.87 1.28 0.77 1.49 1850.0 0 02 0.53 1.87 1.28 0.77 1.49 1850.0 0 02 0.53 1.87 1.28 0.77 1.49 1860.0 0 02 0.57 1.49 1.800.0 0 0 0 0 0 02 0.57 1.28 0.77 1.49 1860.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0< | 49 0 84 | | 01 0.49 11.87 11.27 0.77 11.49 2550.0 02 0.49 11.87 12.88 0.77 11.49 2140.0 02 0.52 11.87 11.28 0.77 11.49 1530.0 02 0.53 11.87 11.28 0.77 11.49 1580.0 02 0.53 11.87 11.28 0.77 11.49 1580.0 02 0.57 11.89 0.77 11.49 1580.0 0.0 02 0.57 11.89 0.77 11.49 772.0 0.0 02 0.59 11.87 11.28 0.77 11.49 772.0 0.0 02 0.60 11.87 11.28 0.77 11.49 772.0 0.0 02 0.60 11.87 11.28 0.77 11.49 772.0 0.0 02 0.60 11.87 11.28 0.77 11.49 7425.0 0.0 02 | 51 0.84 1. | | 02 0.49 1.67 1.28 0.77 1.49 2140.0 0.0 0.2 0.52 1.67 1.28 0.77 1.49 1550.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | 0.84 1. | | 02 0.52 1.87 1.28 0.77 1.49 1550.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | 0.96 | | 02 0.53 1.67 1.28 0.77 1.49 1380.0 0.0 02 0.53 1.67 1.28 0.77 1.49 1200.0 0.0 02 0.55 1.67 1.28 0.77 1.49 1200.0 0.0 02 0.56 1.67 1.28 0.77 1.49 772.0 0.0 02 0.50 1.67 1.28 0.77 1.49 772.0 0.0 02 0.60 1.67 1.28 0.77 1.49 772.0 0.0 02 0.60 1.67 1.28 0.77 1.49 772.0 0.0 02 0.60 1.67 1.28 0.77 1.49 772.0 0.0 02 0.60 1.87 1.28 0.77 1.49 772.0 0.0 02 0.60 1.87 1.28 0.77 1.49 752.0 0.0 02 0.62 1.87 1.28 0.77 | . 60 0.78 1. | | 02 0.53 1.87 1.28 0.77 1.49 1200.0 0 02 0.55 1.87 1.28 0.77 1.49 1080.0 0 02 0.59 1.87 1.28 0.77 1.49 772.0 0 02 0.59 1.87 1.28 0.77 1.49 772.0 0 02 0.60 1.87 1.28 0.77 1.49 772.0 0 02 0.60 1.87 1.28 0.77 1.49 772.0 0 02 0.60 1.87 1.28 0.77 1.49 763.0 0 02 0.60 1.87 1.28 0.77 1.49 562.0 0 02 0.60 1.87 1.28 0.77 1.49 562.0 0 02 0.61 1.87 1.28 0.77 1.49 562.0 0 02 0.62 1.87 1.28 0.77 1.4 | . 60 0.96 1. | | 02 0.55 1.87 1.28 0.77 1.49 1080.0 0.00 <td< td=""><td>0.96</td></td<> | 0.96 | | 02 0.58 1.87 1.28 0.77 1.47 863.0 0.00 02 0.59 1.87 1.28 0.77 1.49 772.0 0.00 02 0.60 1.87 1.28 0.77 1.49 772.0 0.00 02 0.60 1.87 1.28 0.77 1.49 772.0 0.00 02 0.60 1.87 1.28 0.77 1.49 752.0 0.00 02 0.60 1.87 1.28 0.77 1.49 542.0 0.00 02 0.62 1.87 1.28 0.77 1.49 550.0 0.00 02 0.62 1.87 1.28 0.77 1.49 463.0 0.00 02 0.62 1.87 1.28 0.77 1.49 463.0 0.00 02 0.62 1.87 1.28 0.77 1.49 288.0 0.00 02 0.62 1.87 1.28 < | . 46 | | 02 0.59 1.87 1.28 0.77 1.49 772.0 0.0 02 0.60 1.87 1.28 0.77 1.49 772.0 0.0 02 0.60 1.87 1.28 0.77 1.49 772.0 0.0 02 0.60 1.87 1.28 0.77 1.49 542.0 0.0 02 0.60 1.87 1.28 0.77 1.49 542.0 0.0 02 0.60 1.87 1.28 0.77 1.49 542.0 0.0 02 0.62 1.87 1.28 0.77 1.49 463.0 0.0 02 0.62 1.87 1.28 0.77 1.49 463.0 0.0 02 0.62 1.87 1.28 0.77 1.49 288.0 0.0 02 0.62 1.87 1.28 0.77 1.49 288.0 0.0 02 0.62 1.87 1.28 0.77 <td>60 0.78</td> | 60 0.78 | | 02 0.60 1.87 1.28 0.77 1.49 704.0 0.0 02 0.60 1.87 1.28 0.77 1.49 542.0 0.0 02 0.60 1.87 1.28 0.77 1.49 542.0 0.0 02 0.60 1.87 1.28 0.77 1.49 542.0 0.0 02 0.61 1.87 1.28 0.77 1.49 543.0 0.0 02 0.62 1.87 1.28 0.77 1.49 543.0 0.0 02 0.62 1.87 1.28 0.77 1.49 463.0 0.0 02 0.62 1.87 1.28 0.77 1.49 386.0 0.0 02 0.62 1.87 1.28 0.77 1.49 227.0 0.0 02 0.62 1.87 1.28 0.77 1.49 227.0 0.0 02 0.62 1.87 1.28 0.77 <td>0.96</td> | 0.96 | | 02 0.60 1.87 1.28 0.77 1.49 636.0 0.00 02 0.60 1.87 1.28 0.77 1.49 589.0 0.0 02 0.60 1.87 1.28 0.77 1.49 589.0 0.0 02 0.61 1.87 1.28 0.77 1.49 562.0 0.0 02 0.62 1.87 1.28 0.77 1.49 463.0 0.0 02 0.62 1.87 1.28 0.77 1.49 425.0 0.0 02 0.62 1.87 1.28 0.77 1.49 288.0 0.0 02 0.62 1.87 1.28 0.77 1.49 288.0 0.0 02 0.62 1.87 1.28 0.77 1.49 227.0 0.0 02 0.62 1.87 1.28 0.77 1.49 227.0 0.0 02 0.62 1.87 1.28 0.77 </td <td>0.96 1.</td> | 0.96 1. | | 02 0.60 1.87 1.28 0.77 1.49 589.0 0.0 02 0.60 1.87 1.28 0.77 1.49 542.0 0.0 02 0.61 1.87 1.28 0.77 1.49 542.0 0.0 02 0.62 1.87 1.28 0.77 1.49 463.0 0.0 02 0.62 1.87 1.28 0.77 1.49 425.0 0.0 02 0.62 1.87 1.28 0.77 1.49 288.0 0.0 02 0.62 1.87 1.28 0.77 1.49 288.0 0.0 02 0.62 1.87 1.28 0.77 1.49 227.0 0.0 02 0.62 1.87 1.28 0.77 1.49 227.0 0.0 02 0.62 1.87 1.28 0.77 1.49 227.0 0.0 02 0.62 1.87 1.28 0.77 <td>. 60 0. 96 1.</td> | . 60 0. 96 1. | | 0.2 0.60 1.87 1.28 0.77 1.49 592.0 0.00 0.2 0.61 1.87 1.28 0.77 1.49 463.0 0.0 0.2 0.62 1.87 1.28 0.77 1.49 425.0 0.0 0.2 0.62 1.87 1.28 0.77 1.49 386.0 0.0 0.2 0.62 1.87 1.28 0.77 1.49 288.0 0.0 0.2 0.62 1.87 1.28 0.77 1.49 227.0 0.0 0.2 0.62 1.87 1.28 0.77 1.49 209.0 0.0 0.2 0.62 1.87 1.28 0.77 1.49 209.0 0.0 0.2 0.62 1.87 1.28 0.77 1.49 209.0 0.0 0.2 0.62 1.87 1.28 0.77 1.49 209.0 0.0 0.62 1.87 1.28 0.77 1.49 209.0 0.0 0.62 1.87 1.28 0.77 | 0.96 1. | | 02 0.61 1.87 1.28 0.77 1.49 463.0 02 0.62 1.87 1.28 0.77 1.49 463.0 02 0.62 1.87 1.28 0.77 1.49 425.0 02 0.62 1.87 1.28 0.77 1.49 386.0 0.0 02 0.62 1.87 1.28 0.77 1.49 288.0 0.0 02 0.62 1.87 1.28 0.77 1.49 227.0 0.0 02 0.62 1.87 1.28 0.77 1.49 209.0 0.0 02 0.62 1.87 1.28 0.77 1.49 209.0 0.0 02 0.62 1.87 1.28 0.77 1.49 209.0 0.0 02 0.62 1.87 1.28 0.77 1.51 140.0 0.0 03 0.62 1.87 1.28 0.77 1.51 140.0 0.0 04 0.62 1.87 1.28 0.77 1.51 130.0 0.0 | . 40 | | 02 0.62 1.87 1.28 0.77 1.49 425.0 0.0 02 0.62 1.87 1.28 0.77 1.49 386.0 0.0 02 0.62 1.87 1.28 0.77 1.49 288.0 0.0 02 0.62 1.87 1.28 0.77 1.49 228.0 0.0 02 0.62 1.87 1.28 0.77 1.49 227.0 0.0 02 0.62 1.87 1.28 0.77 1.49 227.0 0.0 02 0.62 1.87 1.28 0.77 1.49 182.0 0.0 02 0.62 1.87 1.28 0.77 1.51 140.0 0.0 02 0.62 1.87 1.28 0.77 1.51 140.0 0.0 02 0.62 1.87 1.28 0.77 1.51 140.0 0.0 03 0.63 1.87 1.28 0.77 <td>0.96</td> | 0.96 | | 02 0.62 1.87 1.28 0.77 1.49 386.0 0.0 02 0.62 1.87 1.28 0.77 1.49 386.0 0.0 02 0.62 1.87 1.28 0.77 1.49 228.0 0.0 02 0.62 1.87 1.28 0.77 1.49 227.0 0.0 02 0.62 1.87 1.28 0.77 1.49 207.0 0.0 02 0.62 1.87 1.28 0.77 1.51 172.0 0.0 02 0.62 1.87 1.28 0.77 1.51 140.0 0.0 02 0.62 1.87 1.28 0.77 1.51 140.0 0.0 02 0.62 1.87 1.28 0.77 1.51 140.0 0.0 02 0.62 1.87 1.28 0.77 1.51 130.0 0.0 | 0.96 1. | | 02 0.62 1.87 1.28 0.77 1.49 386.0 0.0 02 0.62 1.87 1.28 0.77 1.49 288.0 0.0 02 0.62 1.87 1.28 0.77 1.49 227.0 0.0 02 0.62 1.87 1.28 0.77 1.49 209.0 0.0 02 0.62 1.87 1.28 0.77 1.51 172.0 0.0 02 0.62 1.87 1.28 0.77 1.51 140.0 0.0 02 0.62 1.87 1.28 0.77 1.51 140.0 0.0 02 0.62 1.87 1.28 0.77 1.51 140.0 0.0 02 0.63 1.87 1.28 0.77 1.51 135.0 0.0 02 0.64 1.87 1.28 0.77 1.51 130.0 0.0 | 1.60 0.96 1.95 | | 02 0.62 1.87 1.28 0.77 1.49 288.0 0.00 02 0.62 1.87 1.28 0.77 1.49 227.0 0.0 02 0.62 1.87 1.28 0.77 1.49 227.0 0.0 02 0.62 1.87 1.28 0.77 1.49 209.0 0.0 02 0.62 1.87 1.28 0.77 1.51 172.0 0.0 02 0.62 1.87 1.28 0.77 1.51 140.0 0.0 02 0.62 1.87 1.28 0.77 1.51 140.0 0.0 02 0.62 1.87 1.28 0.77 1.51 135.0 0.0 02 0.63 1.87 1.28 0.77 1.51 135.0 0.0 02 0.64 1.87 1.28 0.77 1.51 130.0 0.0 | 96 | | 02 0. 62 1. 87 1. 28 0. 77 1. 49 227. 0 0. 0
02 0. 62 1. 87 1. 28 0. 77 1. 49 209. 0 0. 0
02 0. 62 1. 87 1. 28 0. 77 1. 49 182. 0 0. 0
02 0. 62 1. 87 1. 28 0. 77 1. 51 172. 0 0. 0
02 0. 62 1. 87 1. 28 0. 77 1. 51 154. 0 0. 0
03 0. 62 1. 87 1. 28 0. 77 1. 51 140. 0 0. 0
04 0. 63 1. 87 1. 28 0. 77 1. 51 135. 0 0. 0
05 0. 64 1. 87 1. 28 0. 77 1. 51 135. 0 0. 0 | 1 94 | | 02 0.62 1.87 1.28 0.77 1.49 207.0 02 0.62 1.87 1.28 0.77 1.49 207.0 02 0.62 1.87 1.28 0.77 1.51 172.0 0.0 02 0.62 1.87 1.28 0.77 1.51 154.0 0.0 02 0.62 1.87 1.28 0.77 1.51 140.0 0.0 02 0.63 1.87 1.28 0.77 1.51 135.0 0.0 02 0.64 1.87 1.28 0.77 1.51 130.0 0.0 | 0.70 | | 02 0. 62 1. 87 1. 28 0. 77 1. 49 182.0 0. 02 0. 62 1. 87 1. 28 0. 77 1. 51 172.0 0. 02 0. 62 1. 87 1. 28 0. 77 1. 51 154.0 0. 02 0. 62 1. 87 1. 28 0. 77 1. 51 140.0 0. 02 0. 63 1. 87 1. 28 0. 77 1. 51 135.0 0. 02 0. 64 1. 87 1. 28 0. 77 1. 51 130.0 0. | 60 0 96 1 | | 02 0.62 1.87 1.28 0.77 1.51 172.0 0.00 02 0.62 1.87 1.28 0.77 1.51 154.0 0.00 02 0.62 1.87 1.28 0.77 1.51 140.0 0.00 02 0.63 1.87
1.28 0.77 1.51 135.0 0.00 02 0.64 1.87 1.28 0.77 1.51 130.0 0.00 | 96 0 09 | | 2. 02 0. 62 1. 87 1. 28 0. 77 1. 51 154.0 0. 2. 02 0. 62 1. 87 1. 28 0. 77 1. 51 140.0 0. 2. 02 0. 63 1. 87 1. 28 0. 77 1. 51 135.0 0. 2. 02 0. 64 1. 87 1. 28 0. 77 1. 51 130.0 0. | 60 0.96 1. | | 2.02 0.62 1.87 1.28 0.77 1.51 140.0 0.
2.02 0.63 1.87 1.28 0.77 1.51 135.0 0.
2.02 0.64 1.87 1.28 0.77 1.51 130.0 0. | 60 0.96 | | 2.02 0.63 1.87 1.28 0.77 1.51 135.0 0.
2.02 0.64 1.87 1.28 0.77 1.51 130.0 0. | . 60 0. 96 1. | | 2.02 0.64 1.87 1.28 0.77 1.51 130.0 0. | 0.96 1. | | | 0.96 1. | ACCUMU-LATED RUNDFF (INCHES) 3822 3935 3935 4033 4096 4135 4187 4219 o o 000000 DISCHARGE (CUBIC FEET PER SECOND) 105. 0 91. 0 78. 0 72. 0 65. 0 125. 0 105. 0 ACCUMU-LATED WEIGHTED RAINFALL ---CONTINUED (INCHES) (INCHES) 51 ACCUMU-LATED RAIN-FALL GAGE 21R 0.77 111111 000000 -CONTINUED (INCHES) ACCUMU-LATED RAIN-FALL AT GAGE 22R 1. 28 1. 28 11.28 11.28 11.28 11.28 11.28 11.28 11.28 11.28 (INCHES) STORM RAINFALL AND RUNGH-FORM RAINFALL AND RUNGH-FORM AT HOUSTON, TEX. ACCUMU-LATED RADN. FALL AT GAGI: 204R 388888 STORM OF JUNE 6 -8 , 1984 (INCHES) ACCUMU-LATED RAIN-FALL GAGE 205R 0. 67 0. 67 0.67 0.67 0.74 0.74 0.74 (INCHES) ACCUMU-LATED RAIN-FALL GAGE 4145 90 (INCHES) ACCUMU-LATED RAIN-1. 95 GAGE 4150 FALL AT (INCHES) ACCUMU-LATED RAIN-FALL AT GAGE 4200 0.96 0.96 0.96 0.96 0.96 96 96 o o (INCHES) ACCUMU-LATED RAIN-FALL AT GAGE 4250 11. 60 11. 60 11. 60 11. 60 99 (INCHES) ACCUMU-LATED RAIN-FALL AT GAGE 4400 2, 17 71.00.00.00 71.00.00.00 70.00.00 JUNE7 1800 2400 JUNE8 0000 0600 1200 1500 1800 2400 DATE AND TIME ## LITTLE WHITEOAK BAYOU DRAINAGE BASIN The locations of data-collection sites in and near the Little Whiteoak Bayou drainage basin are shown in figure 10. Weighted-mean rainfall for the 1984 water year was not determined. The storm of Jan 9-10 was selected for analysis at station $08074540\,\text{,}$ Little Whiteoak Bayou at Houston. Figure 10.-Locations of data-collection sites in and near the Little Whiteoak Bayou drainage basin —66- TX-35 Rev. 5/80 # UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY-TEXAS DISTRICT ANNUAL STORM RAINFALL-RUNOFF SUMMARY DATA Table 9 .-- Storm rainfall-runoff data, 1984 Water Year, Little Whiteoak Bayou | | 85% | | Rainfall | (inches) | | | Ratio | Maximum | |-----------------|----------|----------|--|-------------------------------------|-------------|----------|-----------|----------------------| | Date of Storm | Duration | Weighted | Maximum Incr | Maximum Increment Recorded in Basin | ed in Basin | Runoff | runoff to | discharge | | | (hours) | Total | 15-minute 30-minute | 30-minute | 60-minute | (inches) | rainfall | (ft ³ /s) | | ; | | | Little Whiteoak Bayou
(Drainage Area 18.0 mi ²) | teoak Bayou
a 18.0 mi | 5) | | | | | Jan. 9-10, 1984 | 4.3 | 2.37 | 0.69 | 0.87 | 1.32 | 1.53 | 0.65 | 2610* | | | | | | | | | | | | | | ٠ | - | · | * - Peak Discharge for 1984 Water Year # 08074540 LITTLE WHITEOAK BAYOU AT TRIMBLE STREET AT HOUSTON, TX (Flood-hydrograph partial-record station) LOCATION.--Lat 29°47'33", long 95°22'06", Harris County, Hydrologic Unit 12040104, at downstream side of bridge at Trimble Street, Houston. DRAINAGE AREA. -- 18.0 mi2. ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--June 1979 to current year. June to September 1979 published as Little Whiteoak Bayou at Houston (08074550). GAGE.--Flood-hydrograph and rainfall recorder and crest-stage gage. Datum of gage is National Geodetic Vertical Datum of 1929, 1973 adjustment. Prior to June 1979 occasional discharge measurements to arbitrary datum and water-quality samples were obtained at site 6,200 ft downstream at North Main Street bridge (station 08074550, Little Whiteoak Bayou at Houston). REMARKS.--Additional storm rainfall-runoff data for this site can be obtained from the report "Hydrologic Data for Urban Studies in the Houston, Texas Metropolitan Area." The record for June to September 1979 was published in the 1979 edition of this publication as station Little Whiteoak Bayou at Houston (08074550). EXTREMES FOR PERIOD OF RECORD .-- Maximum discharge, 4,860 ft 3/s Aug. 18, 1983 (elevation, 39.42 ft). EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 1,600 ft3/s and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Elevation
(ft) | |---------|------|-----------------------------------|-------------------| | Jan. 9 | 0615 | *2,610 | 33.07 | | Aug. 24 | 1730 | 2,330 | 33.29 | ### WATER-OUALITY RECORDS PERIOD OF RECORD .-- Chemical, biochemical, and pesticide analyses: June 1979 to current year. ### WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS) | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
(DEG C) | COLOR
(PLAT-
INUM-
COBALT
UNITS) | TUR-
BID-
ITY
(NTU) | OXYGEN,
DIS-
SOLVED
(MG/L) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION) | OXYGEN DEMAND, BIO- CHEM- ICAL, DAY (MG/L) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML) | STREP-
TOCOCCI
FECAL,
KF AGAR
(COLS.
PER
100 ML) | |---------------------|--|--|---|--|--|--|---|---|--|--|--|--| | NOV
01-02
FEB | 1130 | 406 | | | | | | ,, | | 7.9 | | | | 07
JUL | 1330 | 6.0 | 928 | 7.7 | 14.0 | <1 | 3.1 | 11.2 | 107 | 4.8 | 56000 | 3000 | | 03
AUG | 1110 | 3.6 | 354 | 7.6 | 28.0 | 27 | 3.2 | 2.6 | 33 | 4.5 | 120000 | 620 | | 08 | 1215 | 3.6 | 460 | 7.6 | 29.5 | 27 | 1.2 | 5.5 | 72 | 4.4 | 280000 | 6700 | | DATE | HARD-
NESS
(MG/L
AS
CACO3) | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | AD-
SORP-
TION
RATIO | POTAS-
SIUM, I
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
FIELD
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | | NOV | | | | | | | | | | | | | | 01-02
FEB | | | | | | | | | | | | | | 07
JUL | 240 | 0 | 68 | 17 | 110 | 3 | 2.9 | 310 | 34 | 87 | .60 | 15 | | 03
AUG | 89 | 0 | 28 | 4.5 | 39 | 2 | 3.3 | 110 | 16 | 27 | •30 | 9.2 | | 08 | 140 | 0 | 45 | 6.8 | 45 | 2 | 3.7 | 160 | 20 | 38 | •30 | 12 | | DA T
VOV | SOI
CE (MG | OF RESI | DUÉ SOLI
05 VOLA
C, TIL!
- SUS-
ED PEND | A- GE
E, NITR
TOT
ED (MG | N, GEN
ATE NITRI
AL TOTA
/L (MG/ | I, GEN,
LTE NO2+NO
LL TOTAL
L (MG/L | GEN,
3 AMMONI
TOTAI
(MG/I | GEI
IA ORGAI
L TOTA
L (MG | N, MONÍA
NIC ORGAN
AL TOTA
/L (MG/ | AM-
A + PHOS-
NIC PHORUS
AL TOTAL
/L (MG/) | S, ORGA
L TOT
L (MG | NIĆ
AL
/L | | 01-
FEB | 02 | | | | | | | | | | | | | 07.
JUL | •• | 520 | <2 | <2 | .22 .0 | .3 | 0 1.20 |) 1 | . 2 2 . | .4 1.30 |) | 6.8 | |
03.
AUG | •• | 190 | 8 | 4 | .17 .0 | 30 .2 | 0 .44 | ÷0 | .66 1. | .1 .5 | 70 | 9.3 | | 08. | •• | 270 | 9 | 6 | .07 .0 | 130 | 0 .79 | 90 | .91 1. | .7 7.00 |) 1 | 1 | # 08074540 LITTLE WHITEOAK BAYOU AT TRIMBLE STREET AT HOUSTON, TX--Continued ### WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 | | · | DAY
JUL
03.
AUG
08. | re
11 | | S- DIS
VED SOL | S- I
VED SC
G/L (I | DMIUM
DIS-
DLVED
JG/L | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | COPP
DIS
SOL
(UG
AS | - DI
VED SOI | S-
VED | | | |-----------|------|---------------------------------|-----------------------------------|--|--|--|---|---|---|--|---------------------------|----------------------------------|-----------------------------------| | | | | DATE
JUL | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY
DIS-
SOLVEI
(UG/L
AS HG) | SELE
NIUM
DIS
SOLV
(UG/
AS S | , SII
ED SC
L (U | LVER,
DIS-
DLVED
JG/L
S AG) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | | | | | | | | 03
AUG
08 | <1
<1 | 55
5 | <.1
<.1 | | (1
(1 | <1
<1 | 26
10 | | | | | DATE | TIME | AME -
TRYNE
TOTAL | ATRA-
ZINE,
TOTAL
(UG/L) | CYAN-
AZ INE
TOTAL
(UG/L) | METHO-
MYL
TOTAL
(UG/L) | PROME-
TONE
TOTAL
(UG/L) | TRYNI
TOTA | PA2 | INE | PROPHAM
TOTAL
(UG/L) | SEVIN,
TOTAL
(UG/L) | SIMA-
ZINE
TOTAL
(UG/L) | SIME-
TRYNE
TOTAL
(UG/L) | | JUL
03 | 1110 | <.10 | .20 | <.10 | <2.0 | .1 | < | . 1 | <.10 | <2.0 | <2.0 | <.10 | <.1 | | AUG
08 | 1215 | <.10 | .30 | <.10 | <2.0 | .4 | < | . 1 | <.10 | <2.0 | <2.0 | <.10 | <.1 | # STORM RAINFALL AND RUNOFF 08074540 LITTLE WHITEOAK BAYOU AT TRIMBLE ST, HOUSTON, TEX. | DATE
AND
TIME | ACCUMU-
LATED
RAIN-
FALL
AT
GAGE | ACCUMU-
LATED
RAIN-
FALL
AT
GAGE | ACCUMU
LATED
RAIN
FALL
AT
GAGE | ACCUMU
LATED
RAIN-
FALL
AT
GAGE | LATED | DISCHARGE | ACCUMU-
LATED
RUNOFF | |---------------------|---|---|---|--|----------------|-------------------|----------------------------| | | 6500 | 6200 | 4540 | 4400 | | FEET | | | | (INCHES) | (INCHES) | (INCHES) | (INCHES) | (INCHES) | PER
SECOND) | (INCHES) | | | | | | | | | | | | | STORM | OF JAN. 9 | -10, 1984 | | | | | JAN. 9 | _ | _ | | _ | | | | | 0000 | | 0. 0 | 0. 0 | | 0. 0 | | 0.0002 | | 0045 | 0. 0 | 0. 0
0. 0 | 0. 0 | 0. 0 | 0. 0 | 5. 0 | 0. 0004 | | 0100 | 0. 0 | | 0. 0
0. 02
0. 03 | 0. 0 | 0. 01 | 5. 0 | 0.0005 | | 0115 | 00 | 0 . 0 | | 0. 04 | 0. 02 | | 0.0006 | | 0130 | 0.12 | 0. 0
0. 0 | 0. 04
0. 08 | 0. 05 | 0. 05
0. 07 | 7. 0
8. 0 | 0.0008 | | 0145 | 0. 12 | 0. 0 | 0. 08 | 0. 07 | 0.07 | 8.0 | 0.0009 | | 0200
0215 | 0. 12
0. 12 | 0. 0
0. 0 | 0. 11
0. 11 | 0. 07
0. 08 | 0.08
0.08 | 9. 0
10. 0 | 0.0011
0.0013 | | 0213 | 0.12 | 0. 12 | 0. 11
0. 25 | 0. 31 | 0. 20 | 20.0 | 0.0013 | | 0245 | 0. 12 | 0. 12 | 0. 25
0. 26 | 0. 32 | 0. 24 | 20. U | 0.0018 | | 0300 | 0. 12 | 0. 24 | 0. 27 | 0.38 | 0. 25 | 68. 0
103. 0 | 0. 0032 | | 0315 | 0. 24 | 0. 36 | 0. 33 | 0. 55 | 0. 36 | 126. 0 | 0. 0082 | | 0330 | 0. 36 | 0. 48 | 0. 60 | 0. 89 | 0. 58 | 159.0 | 0. 0116 | | 0345 | 0. 96 | 0. 72 | 0. 60 | 1. 10 | 0. 80 | 365. 0 | 0. 0194 | | 0400 | 1.08 | 0. 84 | 0. 67 | | 0. 95 | 741.0 | 0. 0354 | | 0415 | 1. 56 | 0. 96 | 0. 70 | 1. 48 | | 1070. 0 | 0.0584 | | 0430 | 1. 68 | 0. 96 | 0. 75 | 1. 53 | 1. 09
1. 14 | 1400.0 | 0. 0086 | | 0445 | 1.80 | 1.08 | 0. 83 | 1.58 | 1. 24 | 1650.0 | 0.1241 | | 0500 | 1.80 | 1. 20 | 0. 88 | 1. 75 | 1. 32 | 1850. 0 | 0.1639 | | 0515 | 2. 04 | 1. 32 | 1. 57 | 1.88 | 1. 66 | 2020. 0 | 0. ⊉074 | | 0530 | 2. 28 | 1. 44 | 1. 75 | 1. 97 | 1.82 | 2290.0 | 0. 2566 | | 0545 | 2. 40 | 1.44 | 1.86 | 1. 98 | 1.89 | 2490. Q | 0.3102 | | 0600 | 2. 40 | 1. 56 | 1. 95 | 2. 03 | 1. 96 | 2600. 0 | 0. 3562 | | 0615 | 2. 52 | 1.56 | 2. 03 | 2.08 | 2. 02 | 2610.0 | 0. 4224 | | 0630 | 2. 52 | 1. 68 | 2. 06 | 2. 13 | 2. 07 | 25 60. 0 | 0. 4775 | | 0645 | 2. 52 | 1. 68 | 2. 13 | | 2. 10 | 247 0. 0 | 0. 53 0 6 | | 0700 | 2. 64 | 1. 68 | 2. 18 | 2. 18 | 2. 15 | 2380. 0 | 0.5818 | | 0715 | 2. 64 | 1. 68 | 2. 19 | 2. 18 | 2. 15 | 2270. 0 | 0. 6307 | | 0730 | 2. 64 | 1. 68 | 2. 20 | | 2. 15 | 2160.0 | 0. 6772 | | 0745 | 2. 64 | 1. 68 | 2. 21 | 2. 18 | 2. 16
2. 16 | 2040. 0 | 0. 7211 | | 0800 | 2. 64 | 1. 48 | 2. 21 | | | 1900.0 | 0. 7620 | | 0815 | 2. 64 | 1.68 | 2. 22 | 2. 21 | 2. 17 | 1780.0 | 0. 80 03 | | 0830 | 2. 64 | 1. 68 | 2. 22 | 2. 22 | 2. 17 | 1660.0 | 0. 8717 | | 0915 | 2. 64 | 1. 68 | 2. 22 | 2. 22 | 2. 17 | 1290.0 | 0. 9273 | | 0930
1015 | 2.64 | 1. 68
1. 68 | 2. 23
2. 23 | 2. 22
2. 22 | 2. 17
2. 17 | 1200. 0
944. 0 | 0. 97 89
J. 0399 | | 1100 | 2. 64
2. 64 | 1. 68 | 2. 23
2. 23 | 2. 22 | 2. 17
2. 17 | 744. U
760. O |), 0377
), 0971 | | 1200 | 2. 64 | 1. 68 | 2. 23 | 2. 22
2. 22 | 2. 17
2. 17 | 600. 0 | 1. 1552 | | 1315 | 2. 64 | 1. 68 | 2. 23 | 2. 22 | 2. 17 | 464. O | 1. 1902 | | | E. U7 | 1. UU
 | E. EV | 6. 65
 | E. 1/
 | | 7. 7.VE | # STORM RAINFALL AND RUNOFF 08074540 LITTLE WHITEOAK BAYOU AT TRIMBLE ST, HOUSTON, TEX. | DATE | ACCUMU- | ACCUMU- | ACCUMU - | ACCUMU- | ACCUMU- | DISCHARGE | ACCUMU- | |--------------|---------------|----------|---------------|--------------|---------------|----------------|-----------------| | AND | | LATED | | | | | LATED | | TIME | RAIN- | RAIN- | RAIN- | RAIN- | WEIGHTED | | RUNGEF | | | FALL | FALL. | FALL | FALL | RAINFALL | | | | | AT | AT | AT | AT | | | | | | GAGE | GAGE | GAGE | GAGE | | (CUBIC | | | | 6500 | 6200 | 4540 | 4400 | | FEET | | | | | | | | | PER | | | | (INCHES) | (INCHES) | (INCHES) | (INCHES) | (INCHES) | SECOND) | (INCHES) | | | | | | | | | | | | | | AN. 9 -10,19 | | | | | | JAN. 9 | | | | | | | | | 1345 | | | 2 . 23 | | | 427. 0 | 1. 2040 | | 1400 | 2.64 | | 2. 24 | 2. 28 | 2. 22 | 406. 0 | 1. 2127 | | 1415 | 2. 64 | 1.80 | 2. 29 | 2. 33 | 2. 25 | 389. O | 1.2211 | | 1430 | 2. 76 | 1. 92 | 2. 32 | 2. 36 | 2. 32 | 381.0 | 1. 2293 | | 1445 | 2. 76 | 1. 92 | 2. 34 | 2. 36 | 2. 32 | 379. 0 | 1.2374 | | 1500 | 2.76 | | 2. 37 | 2. 36 | 2. 33 | 383.0 | 1. 2457 | | 1515 | 2.76 | | 2. 40 | 2. 36 | 2. 34 | 388. 0 | 1. 2540 | | 1530 | 2.88 | 1. 92 | 2. 41 | 2. 36 | 2. 37 | 401.0 | J. 2670 | | 1600 | 2. 88 | 1. 92 | 2.41 | 2. 36 | 2. 37 | 415 . 0 | 1.3027 | | 1730 | 2.88 | 1. 92 | 2.41 | 2. 36 | 2. 37 | 345.0 | J. 33 24 | | 1800 | 2.88 | | 2.41 | | 2. 37 | 316.0 | 1. 4072 | | | | | 2. 41 | 2. 36 | 2. 37 | 149. O | 1. 4409 | | 2315 | | | 2. 42 | | 2. 37 | 142. 0 | J. 4470 | | 2400 | 2. 88 | 1. 92 | 2. 42 | 2. 36 | 2. 37 | 127. 0 | 1.4620 | | JAN. 10 | | | | | | | | | 0000 | 2. 88 | | 2.42 | | | 127. 0 | | | 0200 | 2. 88 | | 2. 42 | 2. 36 | 2. 37 | | 1. 4779 | | 0400 | | | 2. 42 | | 2. 37 | | J. 48 99 | | 0600 | 2. 88 | | 2. 42 | | 2. 37 | | 1.5015 | | 0 900 | 2. 88 | 1. 92 | 2. 42 | 2. 36 | 2. 37 | 40 . 0 | 1.5101 | | 1100 | 2. 8 8 | 1. 92 | 2. 42 | 2. 36 | 2. 37 | 31.0 | 1.5141 | | 1200 | 2. 88 | 1. 92 | 2. 42 | 2. 36 | 2. 37 | 27. 0 | 1.5188 | | 1 500 | | | 2. 42 | | 2. 37 | | | | | | | 2. 42 | | 2. 37 | | | | 1800 | 2. 8 8 | | 2. 42 | | | 15. O | | | 2400 | . 2. 88 | 1.,92 | 2. 42 | 2. 36 | 2 . 37 | 9 . 0 | 1. 5320 | ### BRAYS BAYOU DRAINAGE BASIN The locations of data-collection sites in and near the Brays Bayou drainage basin are shown in figure 11. Keegans Bayou, Bintliff Ditch, and Hummingbird Street Ditch are shown as separate drainage basins within the Brays Bayou section. Weighted-mean rainfall in the drainage basin for the 1984 water year based on ten rain gages was 28.98 inches or 19.21 inches less than the 30-year (1941-70) average of 48.19 inches for Houston. The monthly totals, in inches, for the 1984 water year weighted-mean rainfall are as follows: Oct. Nov. Dec. Jan. Feb. Mar. Apr. May June July Aug. Sep. Total 0.85 3.45 1.91 3.11 2.66 1.69 0.35 3.09 1.94 3.43 2.92 3.58 28.98 The storm of June 6-8 was selected for analysis at station 08074760, Brays Bayou at Alief. The storm of Nov. 30-Dec. 2 was selected for analysis at station 08074810. Brays Bayou at Gessner Drive, Houston. The storms of Jan. 8-11, and Mar. 23-25 were selected for analysis at station 08075000, Brays Bayou at Houston. Figure II. - Locations of data-collection sites in and near the Brays Bayou drainage basin TX-35 Rev. 5/80 # UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY-TEXAS DISTRICT # ANNUAL STORM RAINFALL-RUNOFF SUMMARY DATA Table 10 .-- Storm rainfall-runoff data, 1984 Water Year, Brays Bayou | Date of Storm | 85%
Duration | Weighted | Rainfall (inches) | (inches)
ement Record | ed in Basin | Runoff | Ratio
runoff to | Maximum
discharge | |-------------------|-----------------|------------|--|---|-----------------|----------|--------------------|----------------------| | | (hours) | | 15-minute 30-minute 6
Brays Bayou at Alief, TX.
(Drainage Area 14.1 mi. ²) | 30-minute
at Alief, TX
a 14.1 mi. | 60-minute
2) | (inches) | rainfall | (ft ³ /s) | | June 6-8, 1984 | 1.0
 1.65 | 0.45 | 06.0 | 1.27 | 0.65 | 0.39 | 597* | - | | | | | | | | | | | | | | Brays
(| Bayou at Gessner Dr., Houston, TX
(Drainage Area 53.2 mi. ²) | ner Dr., Hous
1 53.2 mi. | ton, TX
2) | | | , | | Nov.30-Dec.2,1983 | 2.3 | 1.33 | 1.12 | 1.13 | 1.27 | 0.52 | 0.39 | 2960* | | | | | | | | | | | | | | | | ` | * - Peak Discharge for 1984 Water Year TX-35 Rev. 5/80 UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY-TEXAS DISTRICT ANNUAL STORM RAINFALL-RUNOFF SUMMARY DATA Table 10. -- Storm rainfall-runoff data, 1984 Water Year, Brays Bayou--Continued | 8-11, 1984 9.5 | 0.42 | Brays Bayou at Houston, TX. (Drainage Area 94.9 mi2) 0.84 | t Houston, Ty
a 94.9 mi
0.71 | 0.71 | 1.30 | 0.09
0.77 | 8540 | |----------------|------|---|------------------------------------|------|------|--------------|------| | | | 0.84 | 0.71 | 0.71 | 1.30 | 0.09 | 1800 | | | 0.42 | 0.71 | 0.71 | 0.71 | 0.32 | 0.77 | 1800 | | | | | | | 30:0 | • | - | | | | | | | | | | | | | | | | | · | | | - | | | | | # 08074760 BRAYS BAYOU AT ALIEF, TEX. (Flood-hydrograph partial-record station) LOCATION. -- Lat 29°42'39", long 95°35'13", Harris County, Hydrologic unit 12040104, near center of channel on downstream side of bridge on High Star Street in Alief, Tex. DRAINAGE AREA. -- 14.1 mi². Prior to Jan. 1, 1978, 12.9 mi². PERIOD OF RECORD. -- Feb. 3, 1977 to present. GAGE.--Digital flood-hydrograph recorder and crest-stage gage. Datum of gage is 55.88 ft National Geodetic Vertical Datum of 1929, 1957 adjustment; unadjusted for land-surface subsidence. REMARKS. -- Records poor. EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge 5,090 ft³/s, Sept. 19, 1983. (Gage-height 19.23 ft); maximum gage height, 19.59 ft, Aug. 31, 1981. Minimum discharge not determined. EXTREMES FOR CURRENT YEAR. -- Peak discharge above base of 1,000 ft^3/s (revised) or maximum (*): | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | |--------|------|-----------------------------------|---------------------| | June 6 | 1630 | *597 | 10.60 | Minimum discharge not determined. # STORM RAINFALL AND RUNGFF 08074760 BRAYS BAYOU AT ALIEF, TEX. | DATE
AND
TIME | ACCUMU-
LATED
RAIN-
FALL
AT | ACCUMU-
LATED
RAIN-
FALL
AT | ACCUMU-
LATED
WEIGHTED
RAINFALL | DISCHARGE | ACCUMU-
LATED
RUNOFF | |---------------------|--|---|--|-----------------------|--| | | GAGE
4760 | GAGE
33R | | (CUBIC
FEET
PER | | | | (INCHES) | (INCHES) | (INCHES) | | (INCHES) | | | . جد، ریے میں ہم حد جدد میں میں میں میں ا
) | STORM OF JUN | NE 6 -8 ,19 |
784 | هند الله الله الله الله منها منه منه منه منه منه منه منه الله الله منه الله الله الله الله الله الله | | JUNE6 | | | | | | | 0000 | 0. 0 | 0. 0 | | 10. 0 | | | 0600 | 0. 0 | 0. 0 | | 10. 0 | | | 0930 | 0. 0 | 0. 0 | | | | | 1000 | 0. 0 | 0. 02 | 0. 01 | 10.0 | | | 1030 | 0. 0 | 0. 02 | 0. 01 | 10. 0 | | | 1100 | 0. 0 | 0. 10 | | 10.0 | | | 1130 | 0.02 | 0. 10 | | 10.0 | | | 1200 | 0. 53
1. 29 | 0. 78
0. 78 | 0. 64 | | | | 1230 | 1. 2 7
1. 36 | 0. 78 | 1. 06
1. 50 | | | | 1300
1330 | 1.37 | 1. 68
1. 68 | 1. 50 | 50. Q
65. Q | 0. 0170
0. 022 5 | | 1400 | 1. 41 | 1. 76 | 1. 57 | | | | 1430 | 1. 47 | 1. 76
1. 76 | | 130. 0 | | | 1500 | 1.50 | 1. 84 | 1. 65 | 286. O | | | 1530 | 1. 50 | 1. 84 | | 484. O | | | 1600 | 1. 50 | 1.84 | | 573. O | | | 1630 | 1.50 | 1.84 | | 597. O | | | 1700 | 1. 50 | 1.84 | | 597. O | | | 1800 | 1. 50 | 1.84 | | 547. O | | | 1900 | 1. 50 | 1.84 | | 473. 0 | | | 2000 | | 1.84 | | 409. 0 | | | 2100 | 1. 50 | 1. 84 | | 341.0 | 0. 3848 | | 2200 | 1. 50 | 1.84 | 1. 65 | 281.0 | 0. 4157 | | 2300 | 1. 50 | 1.84 | 1. 65 | 238. 0 | 0. 4418 | | 2400 | 1. 50 | 1.84 | 1. 65 | 205. 0 | 0. 4756 | | JUNE7 | | | | | | | 0000 | 1. 50 | 1.84 | 1. 65 | 205. 0 | 0. 4756 | | 0200 | 1.50 | 1.84 | 1. 65 | 147. 0 | 0. 5079 | | 0400 | 1.50 | 1.84 | 1. 65 | 108. 0 | 0. 5317 | | 0600 | 1. 50 | 1.84 | 1. 65 | 83 . 0 | 0. 5499 | | 0800 | 1. 50 | 1.84 | 1. 65 | 67. Q | 0. 5720 | | 1200 | 1.50 | 1.84 | 1. 65 | 42. 0 | 0. 5951 | | 1800 | 1. 50 | 1.84 | 1. 65 | 24 . 0 | 0.6109 | | 2400 | 1.50 | 1.84 | 1. 65 | 17. O | 0. 6221 | | JUNEB | | | | | | | 0000 | 1.50 | 1.84 | 1. 65 | 17. O | 0. 6221 | | 0600 | 1.50 | 1.84 | 1. 65 | 14. O | 0. 6313 | | 1200 | 1. 50 | 1.84 | 1. 65 | 12.0 | 0. 6393 | | 1800 | 1. 50 | 1.84 | 1. 65 | 11. O | 0. 6465 | | 2400 | 1. 50 | 1.84 | 1. 6 5 | 10. O | 0. 6498 | ### KEEGANS BAYOU DRAINAGE BASIN The locations of data-collection sites in and near the Keegans Bayou drainage basin are shown in figure 12. Weighted-mean rainfall in the drainage basin, based on three rain gages for the 1984 water year was 27.73 inches or 20.46 inches less than the 30-year (1941-70) average of 48.19 inches for Houston. The monthly totals, in inches, for the 1984 water year weighted-mean rainfall are as follows: Dec. Oct. Nov. Jan. Feb. Mar. Apr. May June July Aug. Sep. Total 0.93 2.71 1.70 2.91 2.41 1.52 0.13 2.91 2.21 4.37 2.36 3.57 27.73 The storm of July 18-21 was analyzed at station 08074780, Keegans Bayou at Keegan Road near Houston. The storm of June 6-10 was selected for analysis at station 08074800. Keegans Bayou at Roark Road near Houston. Figure 12.- Locations of data-collection sites in and near the Keegans Bayou drainage basin UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY-TEXAS DISTRICT ANNUAL STORM RAINFALL-RUNOFF SUMMARY DATA Table 11 -- Storm rainfall-runoff data, 1984 Water Year, Keegans Bayou | Date of Storm | 85% | ולם + מה בסון | Rainfall (inches Maximum Increment Re- | Rainfall (inches) | ed in Basin | Runoff | Ratio | Maximum | |------------------|---------|---------------|--|---|-------------------|----------|----------|---------------------------------| | | (hours) | Total | 15-minute | 30-minute | 60-minute | (inches) | rainfall | (ft^3/s) | | | | Keegans B | ayou at Keega
Drainage Are | Bayou at Keegan Rd. near Houston, TX.
(Drainage Area 7.47 mi. ²) | ouston, TX.
2) | | | | | July 18-21, 1984 | 0.5 | 1.79 | 0.82 | 1.40 | 1.79 | 0.51 | 0.29 | 216* | | | | | | | | | | | | • | - | | | | | | | | | | | | | | Keegans B | ayou at Roarl
Drainage Area | Bayou at Roark Rd. near Houston, TX.
(Drainage Area 11.5 mi.2) | uston, TX.
2) | | | Maximum
Gage Height
(ft.) | | June 6-10, 1984 | 1.5 | 1.65 | 0.46 | 0.92 | 1.26 | | • | *00.69 | | | | | | | | | | | | | | - | • | | | · | - | | | | | | | | | | | | | | | * - Peak Discharge/Gage Height for 1984 Water Year # 08074780 KEEGANS BAYUU AT KEEGAN ROAD NEAR HOUSTON, TEX. (Flood-hydrograph partial-record station) LOCATION.--Lat 29°39'55", long 95°35'42", Harris County, Hydrologic Unit 12040104 on downstream side of bridge on Keegan Road, 2.35 miles upstream from station, Keegans Bayou at Roark Road, and about 16 miles southwest of Houston. DRAINAGE AREA.--7.47 mi². Prior to Jan. 1, 1978, 7.87 mi². Prior to Oct. 1, 1973, 6.93 mi². PERIOD OF RECORD.--August 1964 to September 1971; August 5, 1974 to current year. GAGE.--Digital flood-hydrograph and rainfall recorders and crest-stage gage. Prior to April 25, 1978 a flood-hydrograph and rainfall recorder (type SR) and crest-stage gage. Datum of gage is National Geodetic Vertical Datum of 1929, 1973 adjustment, unadjusted for land-surface subsidence. REMARKS.--Records poor. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge 2,760 ft³/s, Sept. 19, 1983. (Gage height 81.93 ft). Maximum elevation 83.55 ft April 14, 1966, (prior to channel improvement). Minimum discharge not determined. EXTREMES FOR CURRENT YEAR.--Peak discharge above base of $350 \text{ ft}^3/\text{s}$ (revised) and maximum (*): | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | |---------|------|-----------------------------------|---------------------| | July 18 | 1845 | *216 | 74.15 | Minimum discharge not determined. # STORM RAINFALL AND RUNOFF 08074780 KEEGANS BAYOU AT KEEGAN ROAD NEAR HOUSTON, TEX. | DATE AND LATED LATED TIME RAIN- MEIGHTED RAIN- FALL RAIN-FALL RAIN | | | | | |
--|--------------|-------------------|---------------|------------|----------| | TIME | DATE | ACCUMU- | ACCUMU- | DISCHARGE | ACCUMU- | | TIME FALL AT GAGE (CUBIC FEET PER (INCHES) (INCHES) SECOND) (INCHES) STORM OF JULY 18-21, 1984 JULY18 0000 0.0 0.0 3.0 0.0056 1200 0.0 0.0 3.0 0.0056 1200 0.0 0.0 3.0 0.0056 1200 0.0 0.0 3.0 0.017 1815 0.0 0.0 143.0 0.0187 1830 0.58 0.58 199.0 0.0290 1845 1.40 1.40 216.0 0.0402 1900 1.65 1.65 199.0 0.0505 1915 1.79 1.79 179.0 0.0598 1930 1.79 1.79 165.0 0.0727 2000 1.79 1.79 165.0 0.0727 2030 1.79 1.79 165.0 0.0727 2030 1.79 1.79 165.0 0.0135 2245 1.79 1.79 165.0 0.1036 2115 1.79 1.79 169.0 0.1036 2115 1.79 1.79 169.0 0.1036 2115 1.79 1.79 169.0 0.1036 2200 1.79 1.79 169.0 0.1556 2204 1.79 1.79 169.0 0.1556 2200 1.79 1.79 160.0 0.1446 2300 1.79 1.79 160.0 0.1556 2400 1.79 1.79 160.0 0.1793 JULY19 0000 1.79 1.79 60.0 0.1793 0200 1.79 1.79 46.0 0.1793 0200 1.79 1.79 46.0 0.2322 0600 1.79 1.79 28.0 0.2322 0600 1.79 1.79 37.0 0.2322 0600 1.79 1.79 28.0 0.3580 0100 1.79 1.79 28.0 0.3580 0100 1.79 1.79 28.0 0.3580 0100 1.79 1.79 28.0 0.3580 0100 1.79 1.79 28.0 0.3580 0100 1.79 1.79 28.0 0.3580 0100 1.79 1.79 28.0 0.3580 0100 1.79 1.79 28.0 0.3580 0100 1.79 1.79 24.0 0.3580 0100 1.79 1.79 179 24.0 0.3580 0100 1.79 1.79 179 24.0 0.3580 0100 1.79 1.79 179 19.0 0.4206 1800 1.79 1.79 179 19.0 0.4206 1800 1.79 1.79 19.0 0.4206 1800 1.79 1.79 19.0 0.4206 1800 1.79 1.79 19.0 0.4526 0100 1.79 1.79 19.0 0.4526 | AND | LATED | LATED | | LATED | | FALL AT GAGE 4780 FEET PER (INCHES) STORM OF JULY 18-21, 1784 JULY18 0000 0.0 0.0 0.0 3.0 0.0019 0600 0.0 0.0 3.0 0.013 1815 0.0 0.0 1830 0.58 0.58 1970 0.0013 1815 1.40 1.4 | TIME | | | | RUNOFF | | AT GAGE 4780 FEET PER (INCHES) (INCHES) STORM OF JULY 18-21, 1984 JULY18 0000 0.0 0.0 0.0 0.0 0.0 0.0 | | | | | | | GAGE 4780 FEET PEER (INCHES) (INCHES) SECOND) (INCHES) STORM OF JULY 18-21,1984 JULY18 0000 0.0 0.0 0.0 3.0 0.0056 1200 0.0 0.0 3.0 0.0056 1200 0.0 0.0 3.0 0.0093 1800 0.0 0.0 3.0 0.0113 1815 0.0 0.0 143.0 0.0187 1830 0.58 0.58 199.0 0.0290 1845 1.40 1.40 216.0 0.0402 1970 1.65 1.65 199.0 0.0505 1915 1.79 1.79 179.0 0.0598 1930 1.79 1.79 179.0 0.0598 1930 1.79 1.79 142.0 0.0874 2030 1.79 1.79 125.0 0.1036 2215 1.79 1.79 125.0 0.1355 2245 1.79 1.79 185.0 0.1355 2245 1.79 1.79 88.0 0.1446 2300 1.79 1.79 88.0 0.1446 2300 1.79 1.79 1.79 88.0 0.1446 2300 1.79 1.79 85.0 0.1556 2400 1.79 1.79 85.0 0.1556 2400 1.79 1.79 62.0 0.1793 JULY19 0000 1.79 1.79 62.0 0.2114 0500 1.79 1.79 46.0 0.2536 0930 1.79 1.79 46.0 0.2536 0930 1.79 1.79 33.0 0.2677 1200 1.79 1.79 28.0 0.2536 0930 1.79 1.79 28.0 0.3406 0930 1.79 1.79 28.0 0.3580 JULY20 0000 1.79 1.79 24.0 0.3580 JULY20 0000 1.79 1.79 24.0 0.3580 JULY21 0000 1.79 1.79 24.0 0.3580 JULY20 0000 1.79 1.79 24.0 0.3580 JULY21 0000 1.79 1.79 24.0 0.3580 JULY21 0000 1.79 1.79 24.0 0.3580 JULY21 0000 1.79 1.79 15.0 0.4526 JULY21 0000 1.79 1.79 15.0 0.4526 JULY21 0000 1.79 1.79 15.0 0.4526 JULY21 0000 1.79 1.79 15.0 0.4537 OCOU 1.79 1.79 15.0 0.4635 OCOU 1.79 1.79 15.0 0.4635 | | | | | | | ### AT80 FEET PER | | | | (CUBIC | | | STORM OF JULY 18-21, 1984 JULY18 0000 | | | | | | | STORM OF JULY 18-21,1984 JULY18 0000 0.0 0.0 3.0 0.0056 1200 0.0 0.0 3.0 0.0056 1200 0.0 0.0 3.0 0.0073 1800 0.0 0.0 3.0 0.0073 1815 0.0 0.0 143.0 0.0187 1830 0.58 0.58 199.0 0.0290 1845 1.40 1.40 216.0 0.0402 1900 1.65 1.65 1.99.0 0.0505 1915 1.79 1.79 179.0 0.0598 1930 1.79 1.79 142.0 0.0874 2030 1.79 1.79 125.0 0.1036 2115 1.79 1.79 109.0 0.1205 2200 1.79 1.79 188.0 0.1446 2300 1.79 1.79 88.0 0.1446 2300 1.79 1.79 88.0 0.1446 2300 1.79 1.79 88.0 0.1446 2300 1.79 1.79 85.0 0.1556 2400 1.79 1.79 62.0 0.1793 JULY19 0000 1.79 1.79 62.0 0.1793 JULY19 0000 1.79 1.79 64.0 0.2124 0500 1.79 1.79 65.0 0.2322 0600 1.79 1.79 46.0 0.2322 0600 1.79 1.79 37.0 0.2536 0930 1.79 1.79 37.0 0.2536 0930 1.79 1.79 24.0 0.3580 JULY20 0000 1.79 1.79 24.0 0.3730 0400 1.79 1.79 24.0 0.3730 0400 1.79 1.79 24.0 0.3730 0400 1.79 1.79 17. 0.4417 2400 1.79 1.79 15.0 0.4526 JULY21 0000 1.79 1.79 17.0 0.4526 JULY21 0000 1.79 1.79 15.0 0.4526 JULY21 0000 1.79 1.79 15.0 0.4526 JULY21 0000 1.79 1.79 15.0 0.4526 0100 1.79 1.79 15.0 0.4526 | | | | | | | STORM OF JULY 18-21, 1984 | | (INCHES) | (INCHES) | | (INCHES) | | JULY18 0000 0.0 0.0 3.0 0.0019 0600 0.0 0.0 3.0 0.0056 1200 0.0 0.0 3.0 0.0073 1800 0.0 0.0 3.0 0.0113 1815 0.0 0.0 143.0 0.0187 1830 0.58 0.58 199.0 0.0290 1845 1.40 1.40 216.0 0.0402 1900 1.65 1.65 199.0 0.0505 1915 1.79 1.79 179.0 0.0598 1930 1.79 1.79 1.79 0.0727 2000 1.79 1.79 1.45.0 0.0727 2000 1.79 1.79 1.45.0 0.0727 2000 1.79 1.79 1.65.0 0.0727 2000 1.79 1.79 1.79 1.09.0 0.1205 2245 1.79 1.79 1.79 0.0 0.1355 | | | | | | | JULY18 0000 0.0 0.0 3.0 0.0019 0600 0.0 0.0 3.0 0.0056 1200 0.0 0.0 3.0 0.0073 1800 0.0 0.0 3.0 0.0113 1815 0.0 0.0 143.0 0.0187 1830 0.58 0.58 199.0 0.0290 1845 1.40 1.40 216.0 0.0402 1900 1.65 1.65 199.0 0.0505 1915 1.79 1.79 179.0 0.0598 1930 1.79 1.79 1.79 0.0727 2000 1.79 1.79 1.45.0 0.0727 2000 1.79 1.79 1.45.0 0.0727 2000 1.79 1.79 1.65.0 0.0727 2000 1.79 1.79 1.79 1.09.0 0.1205 2245 1.79 1.79 1.79 0.0 0.1355 | | | | | | | 0000 0.0 0.0 3.0 0.0019 0600 0.0 0.0 3.0 0.0056 1200 0.0 0.0 3.0 0.0056 1200 0.0 0.0 3.0 0.0073 1800 0.0 0.0 3.0 0.0113 1815 0.0 0.0 143.0 0.0187 1830 0.58 0.58 199.0 0.0290 1845 1.40 1.40 216.0 0.0402 1900 1.65 1.65 199.0 0.0505 1915 1.79 1.79 165.0 0.0727 2000 1.79 1.79 165.0 0.0727 2000 1.79 1.79 125.0 0.1036 2115 1.79 1.79 125.0 0.1036 2115 1.79 1.79 109.0 0.1205 2200 1.79 1.79 109.0 0.1205 2201 1.79 1.79 88.0 0.1446 2300 1.79 1.79 88.0 0.1556 2440 1.79 1.79 88.0 0.1793 JULY19 0000 1.79 1.79 62.0 0.2322 0600 1.79 1.79 64.0 0.2322 0600 1.79 1.79 46.0 0.2322 0600 1.79 1.79 37.0 0.2767 1200 1.79 1.79 37.0 0.2767 1200 1.79 1.79 37.0 0.2767 1200 1.79 1.79 28.0 0.3058 1800 1.79 1.79 24.0 0.3580 JULY20 0000 1.79 1.79 24.0 0.3580 JULY20 0000 1.79 1.79 24.0 0.3580 0100 1.79 1.79 1.79 24.0 0.3730 0600 1.79 1.79 1.79 24.0 0.3730 0600 1.79 1.79 1.79 24.0 0.3730 0600 1.79 1.79 1.79 15.0 0.4206 1800 1.79 1.79 17.0 0.4417 2400 1.79 1.79 15.0 0.4526 JULY21 0000 1.79 1.79 15.0 0.4535 | ## V10 | STORM | OF JULY 18 | 3-21, 1984 | | | 0600 0. 0 0. 0 3. 0 0. 0056 1200 0. 0 0. 0 3. 0 0. 0073 1800 0. 0 0. 0 3. 0 0. 0073 1815 0. 0 0. 0 143. 0 0. 0187 1830 0. 58 0. 58 199. 0 0. 0290 1845 1. 40 1. 40 216. 0 0. 0402 1900 1. 65 1. 65 1. 99. 0 0. 0505 1915 1. 79 1. 79 179. 0 0. 0598 1930 1. 79 1. 79 165. 0 0.
0727 2000 1. 79 1. 79 125. 0 0. 1036 2115 1. 79 1. 79 109. 0 0. 1205 2200 1. 79 1. 79 109. 0 0. 1205 2200 1. 79 1. 79 88. 0 0. 1446 2300 1. 79 1. 79 88. 0 0. 1446 2300 1. 79 1. 79 88. 0 0. 1446 2300 1. 79 1. 79 85. 0 0. 1556 2400 1. 79 1. 79 76. 0 0. 1793 JULY19 0000 1. 79 1. 79 62. 0 0. 2114 0500 1. 79 1. 79 46. 0 0. 2322 0600 1. 79 1. 79 46. 0 0. 2536 0930 1. 79 1. 79 37. 0 0. 2767 1200 1. 79 1. 79 38. 0 0. 3058 1800 1. 79 1. 79 37. 0 0. 2767 1200 1. 79 1. 79 24. 0 0. 3580 JULY20 0000 1. 79 1. 79 24. 0 0. 3580 0100 1. 79 1. 79 24. 0 0. 3580 0100 1. 79 1. 79 17. 0 0. 4417 2400 1. 79 1. 79 17. 0 0. 4206 1800 1. 79 1. 79 17. 0 0. 4417 2400 1. 79 1. 79 15. 0 0. 4526 0100 1. 79 1. 79 15. 0 0. 4526 0100 1. 79 1. 79 15. 0 0. 4535 0600 1. 79 1. 79 15. 0 0. 4526 0100 1. 79 1. 79 15. 0 0. 4526 0100 1. 79 1. 79 15. 0 0. 4526 0100 1. 79 1. 79 15. 0 0. 4535 0600 1. 79 1. 79 15. 0 0. 4535 | | 0.0 | 0.0 | 2.0 | 0.0019 | | 1200 | | | | | | | 1800 | | | | | | | 1815 | | | | | | | 1830 | | | | | | | 1845 | | | | | | | 1900 | | | | | | | 1915 | | | | | | | 1930 | | | | | | | 2000 | | | | | | | 2030 1.79 1.79 109.0 0.1036 2115 1.79 1.79 109.0 0.1205 2200 1.79 1.79 96.0 0.1355 2245 1.79 1.79 88.0 0.1446 2300 1.79 1.79 85.0 0.1556 2400 1.79 1.79 76.0 0.1793 JULY19 0000 1.79 1.79 76.0 0.1793 0200 1.79 1.79 62.0 0.2114 0500 1.79 1.79 50.0 0.2322 0600 1.79 1.79 46.0 0.2536 0930 1.79 1.79 37.0 0.2767 1200 1.79 1.79 33.0 0.3058 1800 1.79 1.79 28.0 0.3406 2400 1.79 1.79 28.0 0.3580 JULY20 0000 1.79 1.79 24.0 0.3580 JULY20 0000 1.79 1.79 24.0 0.3580 0100 1.79 1.79 1.79 24.0 0.3730 0600 1.79 1.79 1.79 24.0 0.3730 0600 1.79 1.79 1.79 24.0 0.3730 0400 1.79 1.79 17.0 0.4206 1800 1.79 1.79 17.0 0.4206 1800 1.79 1.79 15.0 0.4526 JULY21 0000 1.79 1.79 15.0 0.4526 JULY21 0000 1.79 1.79 15.0 0.4537 0200 1.79 1.79 15.0 0.4535 0600 1.79 1.79 15.0 0.4635 0600 1.79 1.79 15.0 0.4780 | | | | | 0. 0727 | | 2115 | 2000 | | | 142. 0 | 0. 0874 | | 2200 1.79 1.79 96.0 0.1355 2245 1.79 1.79 88.0 0.1446 2300 1.79 1.79 85.0 0.1556 2400 1.79 1.79 76.0 0.1793 JULY19 0000 1.79 1.79 62.0 0.2114 0500 1.79 1.79 50.0 0.2322 0600 1.79 1.79 46.0 0.2536 0930 1.79 1.79 46.0 0.2536 0930 1.79 1.79 37.0 0.2767 1200 1.79 1.79 33.0 0.3058 1800 1.79 1.79 28.0 0.3406 2400 1.79 1.79 28.0 0.3580 JULY20 0000 1.79 1.79 24.0 0.3580 JULY20 0000 1.79 1.79 24.0 0.3730 0600 1.79 1.79 179 24.0 0.3730 0600 1.79 1.79 179 24.0 0.3969 1200 1.79 1.79 179 25.0 0.4206 1800 1.79 1.79 15.0 0.4417 2400 1.79 1.79 15.0 0.4526 JULY21 0000 1.79 1.79 15.0 0.4526 0100 1.79 1.79 15.0 0.4535 0600 1.79 1.79 15.0 0.4635 0600 1.79 1.79 15.0 0.4780 1200 1.79 1.79 15.0 0.4780 | 2030 | 1. 7 9 | | 125. O | | | 2245 1. 79 1. 79 88. 0 0. 1446 2300 1. 79 1. 79 85. 0 0. 1556 2400 1. 79 1. 79 76. 0 0. 1793 JULY19 0000 1. 79 1. 79 76. 0 0. 1793 0200 1. 79 1. 79 62. 0 0. 2114 0500 1. 79 1. 79 50. 0 0. 2322 0600 1. 79 1. 79 46. 0 0. 2536 0930 1. 79 1. 79 37. 0 0. 2767 1200 1. 79 1. 79 33. 0 0. 3058 1800 1. 79 1. 79 28. 0 0. 3406 2400 1. 79 1. 79 24. 0 0. 3580 JULY20 0000 1. 79 1. 79 24. 0 0. 3730 0600 1. 79 1. 79 24. 0 0. 3730 0600 1. 79 1. 79 21. 0 0. 3969 1200 1. 79 1. 79 19. 0 0. 4206 1800 1. 79 1. 79 17. 0 0. 4417 2400 1. 79 1. 79 15. 0 0. 4526 JULY21 0000 1. 79 1. 79 15. 0 0. 4526 0100 1. 79 1. 79 15. 0 0. 4535 0600 1. 79 1. 79 15. 0 0. 4635 0600 1. 79 1. 79 15. 0 0. 4780 1200 1. 79 1. 79 15. 0 0. 4780 1200 1. 79 1. 79 15. 0 0. 4780 | 2115 | | 1. 79 | | 0. 1205 | | 2245 1. 79 1. 79 88. 0 0. 1446 2300 1. 79 1. 79 85. 0 0. 1556 2400 1. 79 1. 79 76. 0 0. 1793 JULY19 0000 1. 79 1. 79 76. 0 0. 1793 0200 1. 79 1. 79 62. 0 0. 2114 0500 1. 79 1. 79 50. 0 0. 2322 0600 1. 79 1. 79 46. 0 0. 2536 0930 1. 79 1. 79 37. 0 0. 2767 1200 1. 79 1. 79 33. 0 0. 3058 1800 1. 79 1. 79 28. 0 0. 3406 2400 1. 79 1. 79 24. 0 0. 3580 JULY20 0000 1. 79 1. 79 24. 0 0. 3730 0600 1. 79 1. 79 24. 0 0. 3730 0600 1. 79 1. 79 21. 0 0. 3969 1200 1. 79 1. 79 19. 0 0. 4206 1800 1. 79 1. 79 17. 0 0. 4417 2400 1. 79 1. 79 15. 0 0. 4526 JULY21 0000 1. 79 1. 79 15. 0 0. 4526 0100 1. 79 1. 79 15. 0 0. 4535 0600 1. 79 1. 79 15. 0 0. 4635 0600 1. 79 1. 79 15. 0 0. 4780 1200 1. 79 1. 79 15. 0 0. 4780 1200 1. 79 1. 79 15. 0 0. 4780 | 220 0 | 1. 79 | 1. 79 | 96. O | O. 1355 | | 2300 1.79 1.79 85.0 0.1556 2400 1.79 1.79 76.0 0.1793 JULY19 0000 1.79 1.79 62.0 0.2114 0500 1.79 1.79 50.0 0.2322 0600 1.79 1.79 46.0 0.2536 0930 1.79 1.79 37.0 0.2767 1200 1.79 1.79 33.0 0.3058 1800 1.79 1.79 28.0 0.3406 2400 1.79 1.79 24.0 0.3580 JULY20 0000 1.79 1.79 24.0 0.3580 0100 1.79 1.79 24.0 0.3730 0600 1.79 1.79 21.0 0.3730 0600 1.79 1.79 170 0.4206 1800 1.79 1.79 170 0.4206 1800 1.79 1.79 15.0 0.4526 JULY21 0000 1.79 1.79 15.0 0.4526 0100 1.79 1.79 15.0 0.4635 0600 1.79 1.79 15.0 0.4780 1200 1.79 1.79 15.0 0.4780 1200 1.79 1.79 15.0 0.4635 0600 1.79 1.79 15.0 0.4780 1200 1.79 1.79 15.0 0.4780 | 2245 | 1. 7 9 | 1.79 | | 0. 1446 | | 2400 1.79 1.79 76.0 0.1793 JULY19 0000 1.79 1.79 76.0 0.1793 0200 1.79 1.79 62.0 0.2114 0500 1.79 1.79 50.0 0.2322 0600 1.79 1.79 46.0 0.2536 0930 1.79 1.79 37.0 0.2767 1200 1.79 1.79 33.0 0.3058 1800 1.79 1.79 28.0 0.3406 2400 1.79 1.79 24.0 0.3580 JULY20 0000 1.79 1.79 24.0 0.3580 JULY20 0000 1.79 1.79 24.0 0.3580 O100 1.79 1.79 24.0 0.3580 O100 1.79 1.79 21.0 0.3730 O600 1.79 1.79 17.0 0.4206 1800 1.79 1.79 15.0 0.4526 JULY21 0000 1.79 1.79 15.0 0.4526 | 2300 | 1.79 | | | 0. 1556 | | 0000 1.79 1.79 76.0 0.1793 0200 1.79 1.79 62.0 0.2114 0500 1.79 1.79 50.0 0.2322 0600 1.79 1.79 46.0 0.2536 0930 1.79 1.79 37.0 0.2767 1200 1.79 1.79 33.0 0.3058 1800 1.79 1.79 28.0 0.3406 2400 1.79 1.79 24.0 0.3580 JULY20 0000 1.79 1.79 24.0 0.3730 0600 1.79 1.79 24.0 0.3730 0600 1.79 1.79 21.0 0.3969 1200 1.79 1.79 12.0 0.4206 1800 1.79 1.79 15.0 0.4526 JULY21 0000 1.79 1.79 15.0 0.4526 0100 1.79 1.79 15.0 0.4557 0200 1.79 1.79 15.0 0.4635 0600 1.79 1.79 15.0 0.4780 1200 1.79 1.79 15.0 0.4780 1200 1.79 1.79 15.0 0.4780 | 2400 | 1.79 | 1. 79 | 76. O | 0. 1793 | | 0200 1.79 1.79 62.0 0.2114 0500 1.79 1.79 50.0 0.2322 0600 1.79 1.79 46.0 0.2536 0930 1.79 1.79 37.0 0.2767 1200 1.79 1.79 33.0 0.3058 1800 1.79 1.79 28.0 0.3406 2400 1.79 1.79 24.0 0.3580 JULY20 0000 1.79 1.79 24.0 0.3580 0100 1.79 1.79 24.0 0.3730 0600 1.79 1.79 21.0 0.3969 1200 1.79 1.79 12.0 0.4206 1800 1.79 1.79 17.0 0.4417 2400 1.79 1.79 15.0 0.4526 JULY21 0000 1.79 1.79 15.0 0.4526 O100 1.79 1.79 15.0 0.4535 0600 1.79 1.79 15.0 0.4635 0600 1.79 1.79 15.0 0.4780 1200 1.79 1.79 15.0 0.4780 | JULY19 | | | | | | 0200 1.79 1.79 62.0 0.2114 0500 1.79 1.79 50.0 0.2322 0600 1.79 1.79 46.0 0.2536 0930 1.79 1.79 37.0 0.2767 1200 1.79 1.79 33.0 0.3058 1800 1.79 1.79 28.0 0.3406 2400 1.79 1.79 24.0 0.3580 JULY20 0000 1.79 1.79 24.0 0.3580 0100 1.79 1.79 24.0 0.3730 0600 1.79 1.79 21.0 0.3969 1200 1.79 1.79 12.0 0.4206 1800 1.79 1.79 17.0 0.4417 2400 1.79 1.79 15.0 0.4526 JULY21 0000 1.79 1.79 15.0 0.4526 O100 1.79 1.79 15.0 0.4535 0600 1.79 1.79 15.0 0.4635 0600 1.79 1.79 15.0 0.4780 1200 1.79 1.79 15.0 0.4780 | 0000 | 1. 79 | 1. 7 9 | 76. O | 0. 1793 | | 0500 1.79 1.79 50.0 0.2322 0600 1.79 1.79 46.0 0.2536 0930 1.79 1.79 37.0 0.2767 1200 1.79 1.79 33.0 0.3058 1800 1.79 1.79 28.0 0.3406 2400 1.79 1.79 24.0 0.3580 JULY20 0000 1.79 1.79 24.0 0.3580 0100 1.79 1.79 24.0 0.3730 0600 1.79 1.79 21.0 0.3969 1200 1.79 1.79 12.0 0.4206 1800 1.79 1.79 17.0 0.4417 2400 1.79 1.79 15.0 0.4526 JULY21 0000 1.79 1.79 15.0 0.4526 0100 1.79 1.79 15.0 0.4557 0200 1.79 1.79 15.0 0.4635 0600 1.79 1.79 15.0 0.4780 1200 1.79 1.79 15.0 0.4780 1200 1.79 1.79 15.0 0.4780 | | | | 62. 0 | | | 0600 1.79 1.79 46.0 0.2536 0930 1.79 1.79 37.0 0.2767 1200 1.79 1.79 33.0 0.3058 1800 1.79 1.79 28.0 0.3406 2400 1.79 1.79 24.0 0.3580 JULY20 0000 1.79 1.79 24.0 0.3730 0600 1.79 1.79 24.0 0.3730 0600 1.79 1.79 21.0 0.3969 1200 1.79 1.79 19.0 0.4206 1800 1.79 1.79 17.0 0.4417 2400 1.79 1.79 15.0 0.4526 JULY21 0000 1.79 1.79 15.0 0.4526 0100 1.79 1.79 15.0 0.4557 0200 1.79 1.79 15.0 0.4635 0600 1.79 1.79 15.0 0.4780 1200 1.79 1.79 14.0 0.4780 1200 1.79 1.79 14.0 0.4780 | 0500 | | | | | | 0730 1.77 1.79 37.0 0.2767 1200 1.79 1.79 33.0 0.3058 1800 1.79 1.79 28.0 0.3406 2400 1.79 1.79 24.0 0.3580 JULY20 0000 1.79 1.79 24.0 0.3730 0600 1.79 1.79 21.0 0.3969 1200 1.79 1.79 19.0 0.4206 1800 1.79 1.79 17.0 0.4417 2400 1.79 1.79 15.0 0.4526 JULY21 0000 1.79 1.79 15.0 0.4557 0200 1.79 1.79 15.0 0.4635 0600 1.79 1.79 15.0 0.4780 1200 1.79 1.79 14.0 0.4780 1200 1.79 1.79 12.0 0.4930 | | | | | | | 1200 1.79 1.79 28.0 0.3058 1800 1.79 1.79 28.0 0.3406 2400 1.79 1.79 24.0 0.3580 JULY20 0000 1.79 1.79 24.0 0.3580 0100 1.79 1.79 24.0 0.3730 0600 1.79 1.79 21.0 0.3969 1200 1.79 1.79 19.0 0.4206 1800 1.79 1.79 17.0 0.4417 2400 1.79 1.79 15.0 0.4526 JULY21 0000 1.79 1.79 15.0 0.4557 0200 1.79 1.79 15.0 0.4635 0600 1.79 1.79 15.0 0.4780 1200 1.79 1.79 14.0 0.4780 1200 1.79 1.79 12.0 0.4930 | | | | | | | 1800 | | | | | | | 2400 1.79 1.79 24.0 0.3580 JULY20 0000 1.79 1.79 24.0 0.3580 0100 1.79 1.79 24.0 0.3730 0600 1.79 1.79 21.0 0.3969 1200 1.79 1.79 19.0 0.4206 1800 1.79 1.79 17.0 0.4417 2400 1.79 1.79 15.0 0.4526 JULY21 0000 1.79 1.79 15.0 0.4557 0200 1.79 1.79 15.0 0.4635 0600 1.79 1.79 15.0 0.4780 1200 1.79 1.79 12.0 0.4930 | | | | | | | JULY20 0000 1.79 1.79 24.0 0.3580 0100 1.79 1.79 24.0 0.3730 0600 1.79 1.79 21.0 0.3969 1200 1.79 1.79 19.0 0.4206 1800 1.79 1.79 17.0 0.4417 2400 1.79 1.79 15.0 0.4526 JULY21 0000 1.79 1.79 15.0 0.4526 0100 1.79 1.79 15.0 0.4557 0200 1.79 1.79 15.0 0.4635 0600 1.79 1.79 15.0 0.4780 1200 1.79 1.79 12.0 0.4930 | | | | | | | 0000 1.79 1.79 24.0 0.3580 0100 1.79 1.79 24.0 0.3730 0600 1.79 1.79 21.0 0.3969 1200 1.79 1.79 19.0 0.4206 1800 1.79 1.79 17.0 0.4417 2400 1.79 1.79 15.0 0.4526 JULY21 0000 1.79 1.79 15.0 0.4526 0100 1.79 1.79 15.0 0.4557 0200 1.79 1.79 15.0 0.4635 0600 1.79 1.79 14.0 0.4780 1200 1.79 1.79 12.0 0.4930 | | / / | , , | 21.0 | J. 0000 | | 0100 1.79 1.79 24.0 0.3730 0600 1.79 1.79 21.0 0.3969 1200 1.79 1.79 19.0 0.4206 1800 1.79 1.79 17.0 0.4417 2400 1.79 1.79 15.0 0.4526 JULY21 0000
1.79 1.79 15.0 0.4526 0100 1.79 1.79 15.0 0.4557 0200 1.79 1.79 15.0 0.4635 0600 1.79 1.79 14.0 0.4780 1200 1.79 1.79 12.0 0.4930 | | 1 79 | 1 79 | 24.0 | 0.3580 | | 0600 1.79 1.79 21.0 0.3969 1200 1.79 1.79 19.0 0.4206 1800 1.79 1.79 17.0 0.4417 2400 1.79 1.79 15.0 0.4526 JULY21 0000 1.79 1.79 15.0 0.4526 0100 1.79 1.79 15.0 0.4557 0200 1.79 1.79 15.0 0.4635 0600 1.79 1.79 14.0 0.4780 1200 1.79 1.79 12.0 0.4930 | | | | | | | 1200 1.79 1.79 19.0 0.4206
1800 1.79 1.79 17.0 0.4417
2400 1.79 1.79 15.0 0.4526
JULY21
0000 1.79 1.79 15.0 0.4526
0100 1.79 1.79 15.0 0.4557
0200 1.79 1.79 15.0 0.4635
0600 1.79 1.79 14.0 0.4780
1200 1.79 1.79 12.0 0.4930 | | | | | | | 1800 1.79 1.79 17.0 0.4417 2400 1.79 1.79 15.0 0.4526 JULY21 0000 1.79 1.79 15.0 0.4526 0100 1.79 1.79 15.0 0.4557 0200 1.79 1.79 15.0 0.4635 0600 1.79 1.79 14.0 0.4780 1200 1.79 1.79 12.0 0.4930 | | | | | | | 2400 1.79 1.79 15.0 0.4526 JULY21 0000 1.79 1.79 15.0 0.4526 0100 1.79 1.79 15.0 0.4557 0200 1.79 1.79 15.0 0.4635 0600 1.79 1.79 14.0 0.4780 1200 1.79 1.79 12.0 0.4930 | | | | | | | JULY21 0000 1.79 1.79 15.0 0.4526 0100 1.79 1.79 15.0 0.4557 0200 1.79 1.79 15.0 0.4635 0600 1.79 1.79 14.0 0.4780 1200 1.79 1.79 12.0 0.4930 | | | | | | | 0000 1.79 1.79 15.0 0.4526 0100 1.79 1.79 15.0 0.4557 0200 1.79 1.79 15.0 0.4635 0600 1.79 1.79 14.0 0.4780 1200 1.79 1.79 12.0 0.4930 | | 1.77 | ¥. /7 | 13. 0 | U. TUED | | 0100 1.79 1.79 15.0 0.4557 0200 1.79 1.79 15.0 0.4635 0600 1.79 1.79 14.0 0.4780 1200 1.79 1.79 12.0 0.4930 | | 1 70 | 1 70 | 48.0 | O 4594 | | 0200 1.79 1.79 15.0 0.4635 0600 1.79 1.79 14.0 0.4780 1200 1.79 1.79 12.0 0.4930 | | | | | | | 0600 1.79 1.79 14.0 0.4780
1200 1.79 1.79 12.0 0.4930 | | | | | | | 1200 1.79 1.79 12.0 0.4930 | 1800 1.79 1.79 11.0 0.5067 | | | | | | | 2400 1.79 1.79 9.0 0.5123 | 2400 | 1. 79 | 1. 79 | 9. 0 | 0. 5123 | # 08074800 KEEGANS BAYOU AT ROARK ROAD NEAR HOUSTON, TEX. (Flood-hydrograph partial-record station) - LOCATION.--Lat 29°39'23", long 95°33'43", Harris County, Hydrologic unit 12040104 on left bank on downstream side of bridge on Roark Road in southwest Houston. - DRAINAGE AREA.--11.5 mi². Oct. 1, 1976, to Dec. 31, 1977, 12.0 mi²; August 1964 to Sept. 30, 1976, 11.6 mi². Drainage area changes were the result of ditch relocations or extensions. - PERIOD OF RECORD.--August 1964 to current year (operated as a continuous-record station prior to Oct. 1, 1981). - GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is National Geodetic Vertical Datum of 1929, 1957 adjustment; unadjusted for land-surface subsidence. - REMARKS.--Water-discharge records poor. Channel was rectified during latter part of 1981 water year. Recording rain gage at station. Additional storm rainfall-runoff data for this site can be obtained from the report "Hydrologic Data for Urban Studies in the Houston, Texas Metropolitan Area, 1984." - EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $4,250 \text{ ft}^3/\text{s}$ Sept. 19, 1983 (elevation, 75.00 ft). - EXTREMES FOR CURRENT YEAR.--Peak discharge above base of 1,000 ft³/s (revised) and maximum (*): | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | |--------|------|-----------------------------------|---------------------| | June 6 | 1430 | *a320 | 69.00 | a Estimate. Minimum discharge not determined. # STORM RAINFALL AND RUNOFF 08074800 KEEGANS BAYDU AT ROARK ROAD NEAR HOUSTON, TEX. | DATE | ACCUMU- | | ACCUMU- | STAGE | |--------------|---------------------------|----------------|----------------|--| | AND | LATED | LATED | LATED | | | TIME | RAIN- | RAIN- | WEIGHTED | | | | FALL | FALL | RAINFALL | | | | AT | AT | | | | | GAGE
4800 | GAGE
4780 | | | | | 4600 | 4/60 | | | | | (INCHES) | (INCHES) | (INCHES) | (FEET) | | | STORM | OF JUNE 6 | -10, 1984 | ه ۱۹۵۳ میلی ویون داری این این این این این این این این این ای | | JUNE6 | | | | | | 0000 | 0. 0 | 0. 0 | 0. 0 | 65. 51 | | 0600 | 0. 0 | 0.0 | 0. 0 | 64. 88 | | 1130 | 0. 0 | 0. 0 | 0. 0 | 64. 26
64. 20 | | 1200 | 0. 07 | 0.06 | 0.06 | 64. 20 | | 1230 | 0.81 | 0. 40 | 0. 44 | 66. 45
49. 70 | | 1300
1330 | 0. 99
1. 00 | 1.32 | 1. 29
1. 42 | 68. 70
68. 84 | | 1400 | 1. 13 | 1. 47
1. 48 | 1. 42 | 68. 84
48. 88 | | 1430 | 1. 16 | 1. 49 | 1. 64 | 68. 98
69. 00 | | 1500 | 1. 16 | 1. 70 | 1. 65 | 68. 90 | | 1630 | 1. 16 | 1. 70 | 1.65 | 68. 69 | | 1800 | 1. 16 | 1. 70 | 1. 65 | 68. 51 | | 1830 | 1. 16 | 1. 70 | 1. 65 | 68. 46 | | 1900 | 1. 16 | 1. 71 | 1. 65 | 68. 41 | | 2030 | 1. 16 | 1. 71 | 1. 65 | 68. 27 | | 2230 | 1. 16 | 1. 71 | 1. 65 | 68. 10 | | 2400 | 1. 16 | 1. 71 | 1. 65 | 67. 97 | | JUNE7 | | | | | | 0000 | 1. 16 | 1.71 | 1. 65 | 67. 97 | | 0600 | 1. 16 | 1.71 | 1. 65 | 67. 63 | | 1200 | 1. 16 | 1.71 | 1. 65 | 67. 42 | | 1800 | 1. 16 | 1. 71 | 1. 65 | 67. 24 | | 2400 | 1. 16 | 1.71 | 1. 65 | 67. OB | | JUNEB | | | | | | 0000 | 1. 16 | 1. 71 | 1. 65 | 67. 08 | | 0600 | 1. 16 | 1. 71 | 1. 65 | 66. 85 | | 1200 | 1. 16 | 1. 71 | 1. 65 | 66. 76 | | 1800 | 1. 16 | 1. 71 | 1. 65 | 66. 55 | | 2400 | 1. 16 | 1. 71 | 1. 65 | 66 . 33 | | JUNE9 | | | مة م | | | 0000 | 1. 16 | 1. 71 | 1. 65 | 66. 33 | | 0600 | 1. 16 | 1. 71 | 1. 65 | 65. 96 | | 1200 | 1. 16 | 1.71 | 1. 65 | 65. 79 | | 1800 | 1. 16 | 1. 71 | 1. 65 | 65. 74
65. 60 | | 2400 | 1. 16 | 1. 71 | 1. 65 | 65. 69 | | JUNE10 | 1 14 | 4 774 | 1 4= | 45 40 | | 0000
0600 | 1. 16
1. 16 | 1. 71
1. 71 | 1. 65
1. 65 | 65. 69
65. 56 | | 1200 | 1. 16 | 1. 71
1. 71 | 1. 65
1. 65 | 65. 50 | | 1800 | 1. 16 | 1. 71 | 1. 65 | 65. 40 | | 2400 | 1. 16 | 1. 71 | 1. 65 | 65. 40 | STAGE RECORDS ARE RELATIVE TO GAGE DATUM. DISCHARGE RECORDS ARE NOT CURRENTLY AVAILABLE FOR THIS STORM. # 08074810 BRAYS BAYOU AT GESSNER DRIVE, HOUSTON, TEX. (Flood-hydrograph partial-record station) LOCATION.--Lat 29°40'21", long 95°31'41", Harris County, Hydrologic unit 12040104 on right bank on downstream side of bridge at Gessner Drive in southwest Houston. DRAINAGE AREA.--53.2 mi². Prior to Jan. 1, 1978, 51.7 mi². PERIOD OF RECORD.--Feb. 1, 1977 to current year. GAGE.--Digital flood-hydrograph recorder and crest-stage gage. Datum of gages is National Geodetic Vertical Datum of 1929, 1964 adjustment, unadjusted for land-surface subsidence. REMARKS. -- Records good. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge 16,800 ft³/s, Sept. 19, 1983 (elevation 65.33 ft); minimum discharge not determined. EXTREMES FOR CURRENT YEAR.--Peak discharge above base of 3,000 ${\rm ft^3/s}$ (revised) and maximum (*): | DATE | T IME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | |---------|-------|-----------------------------------|---------------------| | Nov. 30 | 1600 | *2,960 | 51.41 | Minimum discharge not determined. STORM RAINFALL AND RUNOFF 08074810 BRAYS BAYOU AT GESSNER DRIVE HOUSTON, TEX. | DATE
AND
TIME | ACCUMU-
LATED
RAIN-
FALL
AT
GAGE | ACCUMU-
LATED
RAIN-
FALL
AT
GAGE
4780 | ACCUMU-
LATED
RAIN-
FALI
AT
GAGE | ACCUMU-
LATED
RAIN-
FALL
AT
QAQE | ACCUMU-
LATED
RAIN-
FALL
AT
GAGE
328 | ACCUMU-
LATED
RAIN-
FALL
AT
GAGE
31R | ACCUMU-
LATED
WI-TGHTED
RATNFALL | DISCHARGE
(CUBIC | ACCUMU-
LATED
RUNDFF | |----------------------|---
---|---|---|--|--|---|------------------------|----------------------------| | | (INCHES) FEET
PER
SECOND) | (INCHES) | | | | 0. 0
0. 0
0. 0
0. 0
0. 0
0. 0
0. 0
0. 0
0. 01
0. 02
0. 02
0. 02
0. 02
0. 02
0. 02
0. 02
0. 02
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
0. 58
0. | STORM | DF NOV. 30 | TO DEC. 2 , |
1983 | | | | | NOV. 30 | | | | | | | | | | | 0000 | 0. 0 | 0. 0 | 0. 0 | 0. 0 | 0 . 0 | 0. 0 | 0. 0 | 2 6. 0 | 0. 0012 | | 0315 | 0. 0 | 0. 0 | 0. 0 | 0. 0 | 0. 0 | 0. 0 | 0. 0 | 28.0 | 0. 0027 | | 0330 | 0 0 | 0. 0 | 0.0 | 0. 0 | 0. 0 | 0. 03 | 0. 00 | 28. 0 | 0. 0029 | | 0345 | 0.0 | 0.0 | 0. 0 | 0.0 | 0. 0 | 0.05 | 0.00 | 28.0 | 0.0031 | | 0400 | 0.02 | 0.0 | 0.0 | 0.0 | 0.0 | 0.05 | 0.00 | 28.0 | 0.0033 | | 0415
04 45 | 0.03 | 0.0 | 0.0 | 0.0 | 0.0 | 0.05 | 0.00 | 28. U | 0.0036 | | 0500 | 0.03 | 0.0 | 0.0 | 0.0 | 0.0 | 0.05 | 0.00 | 20.0 | 0.0037 | | 0515 | 0.03 | 0.0 | 0.0 | 0.0 | 0.04 | 0.05 | 0.01 | 20.0 | 0.0041 | | 0530 | 0.03 | 0.01 | 0.05 | 0.0 | 0.04 | 0.05 | 0.03 | 28.0 | 0.0045 | | 0545 | 0.03 | 0.02 | 0.05 | 0.0 | 0.04 | 0.05 | 0.03 | 27.0 | 0.0047 | | 0600 | 0.03 | 6.02 | 0.05 | 0.0 | 0.04 | 0.05 | 0.03 | 27.0 | 0.0051 | | 0645 | 0. 03 | 0.02 | 0.05 | 0.0 | 0.04 | 0. 05 | 0. 03 | 26. 0 | 0. 0055 | | 0700 | 0. 03 | 0. 02 | 0.06 | 0. 0 | 0. 04 | 0. 05 | 0. 03 | 25. 0 | 0. 0073 | | 1145 | 0. 03 | 0. 02 | 0. 06 | 0. 0 | 0. 04 | 0. 05 | 0. 03 | 27. 0 | 0.0092 | | 1200 | 0. 03 | 0. 02 | 0. 06 | 0. 0 | 0. 05 | 0. 05 | 0. 04 | 28. 0 | 0. 0095 | | 1215 | 0. 03 | 0. 02 | 0. 05 | 0. 0 | 0. 05 | 0. 05 | 0. 04 | 28. 0 | 0. 0097 | | 1230 | 0. 03 | 0. 02 | 0. 20 | 0. 0 | 0. 05 | 0. 05 | 0. 07 | 29. 0 | 0. 0099 | | 1245 | 0.03 | 0. 02 | 0. 6 2 | 0. 0 | 0. 05 | 0. 05 | 0.18 | 2 9. 0 | 0. 0101 | | 1300 | 0. 03 | 0. 10 | 1.33 | 0. 0 | 1. 17 | 0. 05 | 0. 66 | 30. 0 | 0.0103 | | 1315 | O. 03 | 0.10 | 1. 33 | 0. 0 | 1. 17 | 0. 05 | 0. 66 | 52 . 0 | 0. 0107 | | 1330 | 0. 19 | 0. 10 | 1. 33 | 0. 0 | 1. 17 | 0. 05 | 0. 47 | 76. O | 0.0112 | | 1345 | 0. 19 | 0. 10 | 1. 33 | 0. 0 | 1. 17 | 0. 05 | 0. 67 | 146. 0 | 0.0123 | | 1400 | 0. 22 | 0. 16 | 1. 33 | 0. 0 | 1. 26 | 0. 05 | 0. 71 | 355. 0 | 0. 0149 | | 1415 | 0.37 | 0. 20 | 1. 78 | 0.0 | 1. 26 | 0. 05 | 0.84 | 642. 0 | 0.0196 | | 1430 | 0.39 | 0. 21 | 2. 34 | 0.0 | 1. 26 | 0.05 | 0. 99 | 868. U | 0. 0259 | | 1445
1500 | 0.37 | 0 38 | 2. JB | 0.0 | 1.20 | 0.03 | 1.05 | 1050.0 | 0.0333 | | 1515 | 1.15 | 0.52 | 2.47 | 0.0 | 1.72 | 0.37 | 1.24 | 1370. U | 0.0431 | | 1530 | 1.10 | 0.50 | 2.47 | 0.0 | 1.75 | 0.72 | 1.30 | 2700.0 | 0.0013 | | 1545 | 1 27 | 0.58 | 2.49 | 0.0 | 1 72 | 0.43 | 1.31 | 2900.0 | 0.1021 | | 1600 | 1. 27 | 0.58 | 2.49 | 0.0 | 1.73 | 0.43 | 1. 31 | 2960. 0 | 0. 1237 | | 1615 | 1. 28 | 0. 58 | 2.49 | 0. 0 | 1. 73 | 0. 43 | 1, 31 | 2880. 0 | 0, 1446 | | 1630 | 1. 28 | 0. 58 | 2.49 | 0. 0 | 1. 73 | 0, 43 | J. 31 | 2690. 0 | 0. 1740 | | 1700 | 1. 28 | 0. 58 | 2. 49 | 0.0 | 1. 73 | 0. 43 | J. 31 | 2330. 0 | 0. 2080 | | 1730 | 1. 28 | 0. 58 | 2. 49 | 0. 0 | 1.73 | 0. 43 | J. 31 | 1940. 0 | 0. 2362 | | 1800 | 1.28 | 0. 58 | 2. 49 | 0. 0 | 1. 73 | 0. 43 | J. 31 | 1600. 0 | 0. 2595 | | 1830 | 1. 28 | 0. 58 | 2.49 | 0. 0 | 1. 73 | 0. 43 | J. 3 1 | 1330. 0 | 0. 2789 | | 1900 | 1.28 | 0. 58 | 2.49 | 0.0 | 1. 73 | 0. 43 | J. 31 | 1110.0 | 0. 2950 | STORM RAINFALL AND RUNOFF 08074810 BRAYS BAYOU AT GESSNER DRIVE HOUSTON, TEX. | DATE
AND
TIME | | FALL | RAIN-
Fall | LATED
RAIN-
FALL | | ACCUMU-
LATED
RAIN-
FALL | LATED | DISCHARGE | ACCUMU-
LATED
RUNOFF | |---------------------|--------------------|----------|---------------|------------------------|----------|-----------------------------------|---------------|-----------------------|----------------------------| | | AT
GAGE
4910 | | | | | AI
GAGE
31R | | (CUBIC
FEET
PER | | | | (INCHES) | (INCHES) | | ~ | | | STORM OF NOV | 30 TO DEC. | 2,1983 | CONTINUED | | | | | NOV. 30 | | | | | | | | | | | 1930 | 1.28 | | 2 44 | 0. 0 | 1. 73 | 0 43 | J. 31 | 957 0 | 0. 3090 | | 2000 | 1 28 | 0. 58 | 2. 44 | 0. 0 | 1. 73 | 0. 43 | J 31 | 837 0 | 0 3212 | | 2030 | 1 28 | 0. 58 | 2. 49 | 0. 0 | 1. 73 | 0. 43 | J. 31 | 756. 0 | 0. 3322 | | 2100 | 1.28 | 0. 58 | 2 49 | 0.0 | 1 73 | 0. 43 | J. 31 | 692. 0 | 0. 3423 | | 2130 | 1 28 | 0 59 | 2 49 | 0. 0 | 1. 73 | 0. 43 | J. 3 2 | 645. 0 | 0. 3517 | | 2200 | | 0 59 | 2 47 | 0 0 | 1 73 | 0 43 | J. 32 | 601.0 | 0. 3648 | | 2300 | | | 2. 49 | 0 0 | 1 73 | 0. 43 | J. 32 | 519.0 | 0. 3799 | | 2400 | 1 28 | 0 59 | 2 49 | 0 0 | 1 73 | 0. 43 | J. 32 | 45 5 . 0 | 0 3998 | | DEC 1 | | | ~ | | . =0 | | | | | | 0000 | 1 28 | 0 59 | 2 47 | 0 0 | 1 73 | 0 43 | J. 32 | 455. 0 | 0. 3998 | | 0200 | 1 28 | 0 59 | 2 47 | 0 0 | 1 73 | 0 43 | 1 32 | 346.0 | 0.4199 | | 0400 | 1 28 | 0 59 | 2 49 | 0. 0 | 1 73 | 0 43 | J 32 | 267. 0 | 0. 4355 | | 0600 | 1 28 | 0 59 | 2. 47 | 0 0 | 1. 73 | 0 43 | J 32 | 205 0 | 0.4474 | | 0800 | 1 28 | 0 59 | 2 47 | 0 0 | 1 73 | 0. 43 | J. 32 | 152.0 | 0.4563 | | 1000 | 1 28 | 0 59 | 2 47 | 0 0 | 1 73 | 0 43 | J 32 | 124.0 | 0. 4635 | | 1200 | 1 28 | | 2 47 | 0 0 | 1 73 | 0 43 | 1 32 | 102.0 | 0. 4709 | | 1500 | 1 28 | | 2 49 | 0 0 | 1 73 | 0 43 | 1.32 | 80. O | 0. 4779 | | 1,800 | 1 28 | 0. 59 | 2 47 | 0 0 | 1 73 | 0 43 | 1.32 | 68 . 0 | 0.4868 | | 2400 | 1 28 | 0. 59 | 2 49 | 0 0 | 1 73 | 0 43 | J. 32 | 56. O | 0. 4966 | | DEC 2 | | | | | | | | | | | 0000 | 1 28 | 0. 59 | 2.49 | 0 0 | 1 73 | 0. 43 | 1.32 | 56. O | 0. 4966 | | 0600 | 1 29 | 0 59 | 2. 50 | 0 0 | 1 73 | 0. 43 | 1 32 | 46. 0 | 0. 5047 | | 1200 | 1.36 | 0 59 | 2. 50 | O. O | 1 73 | 0. 45 | J. 32 | 43. 0 | 0. 5122 | | 1800 | 1 39 | | 2 51 | 00 | 1 73 | 0 45 | J. 33 | 45 . O | 0. 5200 | | 2400 | 1 39 | O 61 | 2 51 | 0.0 | 1. 73 | 0.45 | J. 33 | 40 . 0 | 0. 5235 | # HUMMINGBIRD STREET DITCH DRAINAGE BASIN The location of data-collection sites in the Hummingbird Street Ditch drainage basin are shown in figure 13. Weighted-mean rainfall for the 1984 water year was not determined. The storm of Nov. 30 was selected for analysis at station 08074910, Hummingbird Street Ditch at Houston, Tex. Figure 13 .-Locations of data-collection sites in and near the Hummingbird Street Ditch drainage basin —89- TX-35 Rev. 5/80 UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY-TEXAS DISTRICT ANNUAL STORM RAINFALL-RUNOFF SUMMARY DATA Table 12. -- Storm rainfall-runoff data, 1984 Water Year, Hummingbird Street Ditch | | 85% | | Rainfall | (inches) | | | Ratio | Maximum | |---------------|-----|----------|---|-------------------------------------|----------------|----------|-----------|------------------------------| | Date of Storm | on | Weighted | Maximum Incr | Maximum Increment Recorded in Basin | ed in Basin | Runoff | runoff to | discharge | | | | Total | 15-minute | 30-minute | 60-minute | (inches) | rainfall | $(\mathrm{ft}^3/\mathrm{s})$ | | | | Humming | igbird Street Ditch at Houston, TX.
(Drainage Area $0.32~\mathrm{mi}^2$) | Ditch at Hous | ton, TX.
2) | | | | | Nov. 30, 1983 | 1.9 | 1.28 | 0.74 | 0.86 | 0.88 | 0.55 | 0.43 | 82 | - | · | | | | | | | | | | | | | | - | • | | | | - | | | | | | | | | | | | | | | # 08074910 HUMMINGBIRD STREET DITCH AT HOUSTON, TEX. (Flood-hydrograph partial-record station) LOCATION.--Lat 29°39'44", long 95°29'11", Harris County, Hydrologic Unit 12040104, at downstream side of bridge at intersection of Hummingbird Street Ditch and Mullins Street in southwest Houston. DRAINAGE AREA. -- 0.32 mi². PERIOD OF RECORD.--Nov. 3, 1978 to current year. GAGE.--Digital flood-hydrograph and rainfall recorders and crest-stage gage. Datum of gage is National Geodetic Vertical Datum of 1924, 1973 adjustment, unadjusted for land-surface subsidence. REMARKS.--Records poor. Heavy vegetal growth makes a stage-discharge relationship difficult to define. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge 227 ft³/s, May 3, 1981, (gage-height, 59.46 ft); no flow for many days. EXTREMES FOR CURRENT YEAR.--Peak discharge above base of 75 ft^3/s and maximum (*): | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | | | |---------|------|-----------------------------------|---------------------|--|--| | Nov. 30 | 1515 | 82 | 56.90 | | | | Jan. 9 | 0400 | *121 | 57.76 | | | No flow for many days. # STORM RAINFALL AND RUNOFF OB074910 HUMMINGBIRD STREET DITCH AT HOUSTON, TEX. | DATE | ACCUMU- | ACCUMU- | DISCHARGE | ACCUMU- | |---------|----------|------------|---------------|-----------| | AND | LATED | LATED | | LATED | | TIME | RAIN- | WEIGHTED | | RUNOFF | | | | RAINFALL | | IVOITOI I | | | AT | MINIME | | | | | | | CUBIC | | | | GAGE | | (CUBIC | | | | 4910 | | FEET | | | | | | PER | | | | (INCHES) | (INCHES) | SECOND) | (INCHES) | | | | | | | | | STORM | OF NOV. 30 |), 1983 | | | NOV. 30 | | | | | | 0000 | 0. 0 | 0. 0 | 0. 0 | O. O | | 0400 | 0. 02 | 0. 02 | | 0. 0 | | 1200 | 0. 03 | 0. 03 | 0. 0 | 0. 0 | | 1300 | 0.03 | 0. 03 | 0. 0
0. 0 | 0. 0 | | 1300 | 0. 03 | 0. 03 | 0.0 | | | | | | | 0.0002 | | 1320 | 0.08 | 0.08 | | 0. 0004 | | 1325 | 0.13 | 0. 13 | | 0. 0007 | | 1330 | 0. 19 | 0. 19 | | 0.0015 | | 1345 | 0. 19 | 0. 19 | | 0. 0021 | | 1350 | 0. 20 | 0. 20 | | 0. 0024 | | 1355 | 0. 21 | 0. 21 | | 0. 0029 | | 1400 | 0. 22 | 0. 22 | | 0. 0034 | | 1405 | 0. 27 | 0. 27 | | 0.0042 | | 1410 | 0. 32 | 0. 32 | 2. 5 | 0. 0052 | | 1415 | 0. 37 | 0. 37 | 3. 1 | 0. 0065 | | 1420 | 0. 37 | 0. 37 | 4. 7 | 0.0084 | | 1425 | 0. 38 | 0. 38 | 6. 2 | 0. 0109 | | 1430 | 0. 39 | 0. 39 | 7. 8 | | | 1445 | 0. 39 | 0. 39 | | | | 1450 | 0. 39 | 0. 39 | | | | 1455 | 0. 40 | | 39. 0 | | | 1500 | 0. 41 | | 54. O | | | 1505 | 0. 65 | | 74. O | | | 1510 | 0. 90 | 0. 90 | 81. O | 0. 1354 | | 1515 | | | | | | | 1. 15 | 1. 15 | 82. O | 0. 1685 | | 1520 | 1.19 | 1. 19 | 79. O | 0. 2004 | | 1525 | 1.23 | 1. 23 | 74. 0 | 0. 2303 | | 1530 | 1. 27 | 1. 27 | 68 . 0 | 0. 2851 | | 1545 | 1. 27 | 1. 27 | 52. 0 | 0. 3481 | | 1600 | 1: 27 | 1. 27 | 41.0 | 0. 3895 | | 1610 | 1. 27 | 1. 27 | 34. 0 | 0. 4100 | | 1615 | 1. 28 | 1. 28 | 30 . 0 | 0. 4342 | | 1630 | 1.28 | 1. 28 | 23 . 0 | 0. 4574 | | 1640 | 1. 28 | 1. 28 | 18.0 | 0. 4720 | | 1650 | 1. 28 | 1. 28 | 14. 0 | 0. 4805 | | 1655 | 1. 28 | 1. 28 | 11.0 | 0. 4849 | | 1700 | 1. 28 | 1. 28 | 8. <i>9</i> | 0. 5082 | | 1800 | 1. 28 | 1. 28 | 2. 5 | 0. 5506 | | 2400 | 1. 28 | 1. 28 | 0. 3 | 0. 5550 | | | | | | | ### 08075000 BRAYS BAYOU AT HOUSTON, TX LOCATION.--Lat 29°41'49", long 95°24'43", Harris County, Hydrologic Unit 12040104, near right bank at downstream side of Main Street Bridge in southwest Houston, 1.6 mi upstream from Harris Gully, and 11.6 mi upstream from Buffalo Bavou. DRAINAGE AREA. -- 94.9 mi2. Prior to October 1976, 88.4 mi2. Changes due to drainage ditch relocations. ### WATER-DISCHARGE RECORDS PERIOD OF RECORD .-- May 1936 to current year. REVISED RECORDS. -- WSP 1732: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 7.16 ft below National Geodetic Vertical Datum of 1929, 1973 adjustment; unadjusted for land-surface subsidence. Prior to June 20, 1936, nonrecording gage, and June 20, 1936, to Nov. 25, 1959, water-stage recorder at site 0.8 mi downstream at same datum. REMARKS.--Water-discharge records fair except those for period of no gage-height record and those below 200 ft⁸/s, which are poor. No diversion above station. Low flow is mostly sewage effluent from Houston suburbs. AVERAGE DISCHARGE. -- 48 years, 126 ft3/s (91,290 acre-ft/yr). EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 29,000 ft³/s June 15, 1976, and Sept. 19, 1983 (gage height, 52.13 ft); minimum daily, 0.1 ft³/s Oct. 11, 12, 1937, Mar. 14, Apr. 1, 1958. EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage since 1911, 56.0 ft in June 1919 before channel rectification, former site, from information by engineer for city of Houston. EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 6,000 ft /s and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | | | |---------|---------|----------------------|---------------------|--|--| | Nov. 30 | unknown | *8,640 | a38.31 | | | | Jan. 9 | 0545 | 8,540 | 38.21 | | | a From peak mark. Minimum daily discharge, 94 ft3/s Nov. 26. CAL YR 1983 TOTAL 122001 WTR YR 1984 TOTAL 63464 | | | DISCHARGE, | IN CUBIC | FEET | PER SECOND, | WATER YEAR
N VALUES | OCTOBER | 1983 TO | SEPTEMBER | 1984 | | | |--------------------------------------|---------------------------------------|------------------------------------|----------------------------------|--|------------------------------------|---------------------------------------|----------------------------------|-------------------------------------|-----------------------------------|--|--|------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 119 | 180 | 400 | 125 | 120 | 115 | 95 | 110 | 110 | 160 | 114 | 161 | | 2 | 118 | 118 | 150 | 125 | 160 | 118 | 220 | 110 | 110 | 166 | 162 | 702 | | 3 | 123 | 115 | 350 | 120 | 200 | 110 | 120 | 105 | 105 | 173 | 224 | 203 | | 4 | 121 | 114 | 150 | 110 | 120 | 110 | 100 | 105 | 105 | 127 | 281 | 167 | | 5 | 120 | 209 | 120 | 100 | 110 | 170 | 95 | 110 | 120 | 123 | 427 | 154 | | 6 | 114 | 817 | 110 | 100 | 130 | 120 | 95 | 110 | 1050 | 179 | 172 | 130 | | 7 | 114 | 219 | 105 | 105 | 110 | 100 | 100 | 160 | 334 | 118 | 142 | 225 | | 8 | 113 | 121 | 105 | 117 | 100 | 110 | 200 | 130 | 135 | 110 | 126 | 120 | | 9 | 114 | 162 | 100 | 2670 | 600 | 100 | 150 | 110 | 99 | 147 | 202 | 112 | | 10 | 119 | 129 | 135 | 352 | 200 | 110 | 110 | 100 | 103 | 138 | 186 | 117 | | 11 | 119 | 108 | 150 | 172 | 150 | 120 | 100 | 100 | 106 | 128 | 350 | 114 | | 12 | 117 | 112 | 120 | 139 | 500 | 240 | 105 | 100 | 120 | 126 | 240 | 130 | | 13 | 111 | 104 | 100 | 124 | 200 | 326 | 110 | 100 | 110 | 114 | 190 | 126 | | 14 | 112 | 111 | 100 | 119 | 150 | 120 | 110 | 100 | 105 | 110 | 190 | 116 | | 15 | 108 | 104 | 95 | 139 | 140 | 110 | 130 | 100 | 100 | 179 | 140 | 229 | | 16 | 143 | 97 | 600 | 127 | 130 | 105 | 120 | 100 | 100 | 132 | 120 | 224 | | 17 | 331 | 100 | 200 | 116 | 130 | 100 | 115 | 140 | 100 | 120 | 115 | 135 | | 18 | 127 | 98 | 130 | 117 | 125 | 100 | 110 | 520 | 95 | 473 | 120 | 120 | | 19 | 120 | 139 | 125 | 115 | 130 | 532 | 105 | 1330 | 100 | 489 | 110 | 116 | | 20 | 109 | 109 | 120 | 113 | 530 | 148 | 105 | 460 | 95 | 148 | 115 | 121 | | 21 | 116 | 101 | 170 | 110 | 350 | 116 | 105 | 200 | 99 | 124 | 110 | 703 | | 22 | 113 | 115 | 120 | 110 | 200 | 111 | 100 | 130 | 103 | 120 | 110 | 462 | | 23 | 111 | 246 | 100 | 900 | 150 | 234 | 105 | 110 | 95 | 245 | 115 | 164 | | 24 | 114 | 111 | 95 | 400 | 130 | 400 | 110 | 105 | 96 | 688 | 180 | 146 | | 25 | 108 | 95 | 95 | 200 | 130 | 180 | 100 | 105 | 99 | 372 | 180 | 149 | | 26
27
28
29
30
31 | 102
98
107
101
102
177 | 94
157
115
100
2000 | 110
150
135
120
110 | 150
140
130
130
200
140 | 370
150
118
115
 | 140
120
110
105
100
95 | 105
105
100
100
120 | 100
100
105
120
110 | 108
105
105
106
121 | 172
145
251
168
119
112 | 150
130
119
115
113
116 | 121
118
108
107
106 | | TOTAL
MEAN
MAX
MIN
AC-FT | 3821
123
331
98
7580 | 6400
213
2000
94
12690 | 4780
154
600
95
9480 | 7815
252
2670
100
15500 | 5748
198
600
100
11400 | 154
532
95 | 3445
115
220
95
6830 | 5495
177
1330
100
10900 | 4339
145
1050
95
8610 | 5976
193
688
110
11850 | 5164
167
427
110
10240 | 5706
190
703
106
11320 | MAX NOTE .-- No gage-height record Nov. 30 to jan. 5 and many other shorter periods. MAX 12900 2670 MEAN 334 MEAN 173 63464 AC-FT 242000 MIN 94 MIN 94 ### 08075000 BRAYS BAYOU AT HOUSTON, TX--Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD. -- Chemical, biochemical, and pesticide analyses: October 1968 to current year. WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | CON-
DUCT- | PH
(STAND
ARD
UNITS) | - TEMPER-
ATURE
(DEG C) | COBALT | TUR-
BID-
T ITY | OXYGEN,
DIS-
SOLVEI
(MG/L) | CENT
SATUR- | DEMAND,
BIO-
CHEM-
ICAL,
5 DAY | FECAL,
0.7
UM-MF
(COLS./ | STREP-
TOCOCCI
FECAL,
KF AGAR
(COLS.
PER
100 ML) | |-----------------------|--
--|---------------------------|---|--|--|--|--|---|---|-----------------------------------|--| | FEB
07 | 1430 | 113 | 832 | 7.8 | 3 19.0 |) <u></u> | 5 6.7 | 13.8 | 147 | 6.5 | 80 | К2 | | MAR
23
23
24 | 2147
2320
0105
1150 | 444
1700
1110
291 | 211
222 | 7.4
7.2
7.2
7.3 | 20.5 | 560
280 | 52
0 100 | 4.4
4.5
5.8
7.8 | 50 61 | 15
14 | 96000
74000
44000
14000 | 46000
210000
160000
K100000 | | JUL
02 | 1010 | 170 | | 8.0 | | | | 7.9 | | | | K18 | | AUG
06 | 0930 | 103 | | 7.6 | | | | 9.4 | | | | 30 | | DATE | HARD-
NESS
(MG/L
AS
CACO3) | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3) | SOLVED
(MG/L | MAGNE-
SIUM,
DIS-
SOLVEI
(MG/L
AS MG) | , SODIUM,
DIS-
D SOLVED
(MG/L | SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVEI
(MG/L
AS K) | LINITY
FIELD | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | DIS- | (MG/L | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | | FEB
07 | 170 | 0 | 50 | 11 | 110 | 4 | 6.4 | 230 | 43 | 8 6 | .50 | 22 | | MAR
23 | 110 | 0 | | 6.7 | 61 | 3 | 5.1 | 130 | 32 | 53 | .40 | 12 | | 23
24
24 | 54
 | 0 | 17 | 2.8 | 20 | 1 | 3.6 | 59 | 17 | 16 | .20 | 5.5 | | JUL
02 | 120 | 0 | 38 | 7.1 | 77 | 3 | 5.9 | 130 | 36 | 65 | .40 | 18 | | AUG
06 | 140 | 0 | 43 | 8.2 | 69 | 3 | 5.6 | 160 | 32 | 58 | •40 | 18 | | | ; | SUM OF
CONSTI-
TUENTS,
DIS- | AT 105
DEG. C,
SUS- | SOLIDS,
VOLA-
TILE,
SUS-
PENDED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN, | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | | CARBON,
DRGANIC
TOTAL
(MG/L
AS C) | | | FEB
07 | 470 | <2 | <2 | 3.2 | .820 | 4.0 | 2.90 | 2.1 | 5.0 | 4.10 | 8.7 | | | MAR
23 | 280 | 149 | 45 | 1.6 | .360 | 2.0 | .360 | 4.6 | 5.0 | 3.00 | 18 | | | 23 | 120 | 206
208 | 46
49 | .91
1.2 | .090 | 1.0 | 1.10 | 1.6 | 2.7
3.2 | 1.00 | 21
17 | | | 24
JUL | | 86 | 27 | 2.0 | .160 | 2.2 | 1.10 | 1.5 | 2.6 | 2.10 | 14 | | | 02
AUG
06 | 330
330 | 64
25 | 19
7 | 2.7
3.0 | .260
.340 | 3.0
3.3 | .760
.730 | 1.3 | 2.1
1.8 | 2.20
3.30 | 10
7.7 | | | | | DATE | TIME | | BARIUM, | CADMIUM | CHRO- | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON, | | | | | | | JUL
02 | 1010 | 8 | 130 | <1 | <10 | 5 | 11 | | | | | | | AUG
06 | 0930 | 20 | 120 | <1 | <10 | 5 | 12 | | | | | | | DAT
JUL
02. | SOI
(UC
CE AS | AD, NES
SS- DI
LVED SOI
G/L (UG | S- DI
VED SOI
/L (UC | IS- DI
LVED SOL
G/L (UG | M, SILV
S- DI
VED SOI
//L (UG | S- DI
VED SOL | S-
Ved
/L | | | | | | | AUG
06. | | <1 | 2 | <.1 | <1 | <1 | 7 | | | # 08075000 BRAYS BAYOU AT HOUSTON, TX--Continued # WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 | DATE | TIME | AME-
TRYNE
TOTAL | ATRA-
ZINE,
TOTAL
(UG/L) | CYAN-
AZINE
TOTAL
(UG/L) | METHO-
MYL
TOTAL
(UG/L) | PROME-
TONE
TOTAL
(UG/L) | PROME-
TRYNE
TOTAL
(UG/L) | PRO-
PAZINE
TOTAL
(UG/L) | PROPHAM
TOTAL
(UG/L) | SEVIN,
TOTAL
(UG/L) | SIMA-
ZINE
TOTAL
(UG/L) | SIME-
TRYNE
TOTAL
(UG/L) | |------------------|------|------------------------|-----------------------------------|-----------------------------------|----------------------------------|-----------------------------------|------------------------------------|-----------------------------------|----------------------------|---------------------------|----------------------------------|-----------------------------------| | JUL
02
AUG | 1010 | <.10 | <.10 | <.10 | <2.0 | .1 | <.1 | <.10 | <2.0 | <2.0 | <.10 | <.1 | | 06 | 0930 | <.10 | .50 | <.10 | <2.0 | .4 | <.1 | <.10 | <2.0 | <2.0 | .20 | <.1 | # STORM RAINFALL AND RUNOFF 08075000 BRAYS DAYOU AT HOUSTON, TEX. | DATE
AND
TIME | LATED
RAIN-
FALL | ACCUMU-
LATED
RAIN-
FALL
AT
GAGE
4780 | LATED
RAIN -
FALI | LATED
RAIN- | LATED
RAIN-
Fall
AT | LATED
RAIN- | I ATED
WEIGHTED
KAINFALL | (CUBIC | LATED | |---------------------|--|---|-------------------------|---|------------------------------|---|--------------------------------|--|--| | | 4800 | 4780 | 4760 | 308R | 32 R | 31R | | FFET
PER | | | | | (INCHES) | (INCHES) | (INCHES) | (INCHES) | (INCHES) | ()NCHES) | SECOND) | (INCHES) | | | | | STORM | OF JAN. 8 - | | | | | | | JAN 8 | | | | | | | 4. 0 | 404.0 | 0.0100 | | 0000
1200 | 0 0
0 0 | 0 0 | 0. 0
0. 0 | 0. 0
0. 0 | 0. 0
0. 0 | 0. 0
0. 0 | 0. Q
0. Q | 104. 0
103. 0
101. 0
103. 0
106. 0
108. 0
110. 0
135. 0
159. 0
175. 0
190. 0
204. 0
217. 0
224. 0
228. 0 | 0. 0102
0. 0220 | | 1400 | 0.0 | 0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.00 | 103.0 | 0.0253 | | 1600 | 0. 0
0. 0 | 0 0 | 0.0 | 0.01 | 0.0 | 0. 20 | 0. 01 | 103. 0 | 0. 0286 | | 1800 | 0.0 | ōō | Ö. Ö | 0. 01 | 0.0 | 0. 09
0. 20
0. 20
0. 20
0. 20 | 0. 01 | 106. 0 | 0.0312 | | 1900 | 0 0 | 0. 01 | 0.0 | 0. 03 | 0. 0 | 0. 20 | 0. 02 | 108. 0 | 0. 0330 | | 5000 | 0. 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | O. O | 0. 08 | 0. 01 | 0. 20 | 0. 03 | 110.0 | 0. 0220
0. 0253
0. 0286
0. 0312
0. 0330
0. 0354
0. 0367
0. 0367
0. 0382
0. 0397
0. 0414
0. 0431 | | 2030 | 0. 02 | 0 03 | 0. 01 | 0. 08 | 0.01 | 0. 20 | 0. 04 | 135. 0 | 0. 0354 | | 2100
2130 | 0. 04
0. 05 | 0 08 | 0.04 | 0.14 | 0.04 | 0.20 | 0. 07 | 159.0 | 0.0367 | | 2200 | 0.08 | 0.12 | 0.08 | 0.14 | 0.04 | 0. 20 | 0.08 | 190.0 | 0.0392 | | 2230 | 0.08 | 0.22 | 0.10 | 0.17 | 0.18 | 0.20 | 0.16 | 204.0 | 0.0414 | | 5300 | 0.08 | 0. 22 | 0.19 | 0. 19 | 0.18 | 0. 20 | 0.16 | 217.0 | 0.0431 | | 2330 | 0. 08 | 0. 22 | 0.19 | 0. 19 | 0. 18 | 0. 20 | 0. 16 | 224. 0 | 0. 0450 | | 2400 | 0. 08
0. 08 | 0. 22 | 0. 14 | 0. 19 | 0 19 | 0. 20 | 0. 17 | 228. 0 | 0. 0478 | | JAN, 9 | | | | 0. 19 0. 24 0. 24 0. 27 0. 27 0. 27 0. 27 0. 37 0. 37 0. 37 0. 37 1. 21 | | | | 228. 0
228. 0
236. 0
242. 0
247. 0
253. 0
258. 0
275. 0
293. 0
310. 0
327. 0
566. 0
1430 0 | | | 0000 | 0.08
0.08 | 0. 22
0. 22
0. 23
0. 23
0. 25
0. 27
0. 28
0. 28
0. 28
0. 66 | 0.17 | 0. 19 | 0. 19 | 0. 20 | 0. 17 | 228. 0
236. 0
242. 0
247. 0
253. 0
258. 0
275. 0
293. 0 | 0. 0478 | | 0100 | 0.08 | 0. 22 | 0.19 | 0. 24 | 0.19 | 0. 20 | 0.18 | 236. 0 | 0.0502 | | 0115
0130 | 0.08
0.08
0.18 | 0.22 | 0. 20 | 0. 24 | 0.19 | 0.20 | 0.18 | 242.0 | 0.0512 | | 0145 | 0.08 | 0. 23 | 0.20 | 0.24 | 0.17 | 0.20 | 0.20 | 253.0 | 0.0532 | | 0200 | 0 27 | 0. 25 | 0.20 | 0. 27 | 0. 24 | 0. 25 | 0. 25 | 258. 0 | 0.0543 | | 0215 | 0 27
0 27
0 27 | 0. 27 | 0.25 | 0. 27 | 0. 24 | 0. 31 | 0 26 | 275. 0 | 0. 0554 | | 0230 | 0.27 | 0. 28 | 0. 25 | 0 27 | 0. 24 | 0. 32 | 0. 26 | 293. 0 | 0. 0566 | | 0245 | 0. 28 | 0. 29 | 0 26 | 0 27 | 0. 24 | 0. 33 | 0. 27 | 310. 0 | 0.0578 | | 0300 | 0 59 | 0. 28 | 0. 26 | 0.37 | 0.28 | 0.34 | 0.38 | 327. 0 | 0.0592 | | 0315
0330 | 0. 60
0. 70 | 0.66 | 0.35 | 0 3/ | 0.28 | 0. 59 | 0.44 | 1420.0 | 0.0613 | | 0330 | 0.80 | 0 82 | 0 64 | 0.37 | 0.28 | 0.70 | 0.52 | 2430 0 | 0.0873 | | 0400 | 0.99 | 0.90 | 0 77 | 1 21 | 0.72 | 1 11 | 0.93 | 4010 0 | 0. 0936 | | 0415 | 1.08 | 1 06 | 0.83 | 1. 21 | 0.72 | 1.27 | 0. 99 | 5190. 0 | 0.1148 | | 0430 | 1 22 | 1 17 | 0 94 | 1. 21 | 0. 72 | 1.40 | 1.05 | 5980. 0 | 0.1392 | | 0445 | 1. 28 | 1. 37 | 1, 18 | 1. 21 | 0. 72 | 1.49 | 1.13 | 6500. O | 0. 1657 | | 0500 | 0 99
1. 08
1 22
1. 28
1. 30
1. 34 | 1. 41 | 1. 27 | 1. 43 | 1.31 | 1.68 | 1.35 | 6900.0 | 0. 1939 | | 0515 | 1.34 | 1. 44 | 1.31 | 1. 43 | 1.31 | 1.71 | 1.37 | 7930.0 | 0. 2263 | | 0530
0545 | 1.38 | 1.47 | 1.34 | 1.43 | 1.31 | 1./J
1.77 | J. 37 | 9540 O | 0.2008 | | 0600 | 1. 40
1. 47 | 1.50 | 1.36 | 1.43 | 1.31 | 1.77 | 1.58 | 8510.0 | 0.2304 | | 0615 | 1.48 | 1. 59 | 1.46 | 1. 98 | 1. 43 | 1.85 | 1.59 | 8410.0 | 0.3648 | | 0630 | 1. 50 | 0. 28
0. 28
0. 28
0. 66
0. 68
0. 82
0. 90
1. 06
1. 17
1. 37
1. 41
1. 44
1. 47
1. 50
1. 52
1. 59
1. 62 | 1. 52 | 1. 98 | 1. 43 | 1.89 | 1.61 | 8240.0 | 0. 3984 | | | | | | | | | | | | # STURM RAINFALL AND RUNOFF OB075000 BRAYS BAYOU AT HOUSTON, TEX. | DATE | ACCUMU- | | | | | ACCUMU- | | DISCHARGE | | |---------|--|--------------------------------------
---|--------------|--------------------------------------|--|----------------------------------|----------------------------|--| | AND | | | LATED | LATED | LATED | LATED | INTED | | LATED | | TIME | RAIN- | LATED
RAIN- | LATED
RAIN - | RATN- | RATN- | RATN- | WI-1GHTED | | RUNOFF | | | FALL | FALL | FALL | FALL | FALI | LATED
RAIN-
FALL | RA) NEALL | | | | | AT | AT | FALI
AT
GAGE
4760 | AT | AT | AT | William MEE | | | | | GAGE | GAGE | GAGE | GAGE | GAGE | AT
GAGE | | (CUBIC | | | | 4800 | 4780 | 4760 | 308R | 32R | 31R | | FEET | | | | | | | | | | | PFR | | | | (INCHES) SECOND) | (INCHES) | | | | | | | | | | | | | | | | STORM OF JAN | V. 8 -11, 19 | 84 | CONTINUE |) | | | | JAN 9 | | | | | | | | | | | 0645 | 1.50
1.53 | 1.64 | 1, 53 | 1.98 | 1.43 | 1. 94 | 1.62 | 8020.0 | 0.4311 | | 0700 | 1.53 | 1.64 | 1, 53
1, 54 | 1.98
2.11 | 1 54 | 1. 95 | 1. 68 | 77 90 . 0 | 0. 4629 | | 0715 | 1. 53
1. 53
1. 53
1. 53 | 1.64 | 1. 54 1. 54 1. 54 1. 55 1. 55 1. 55 1. 56 1. 56 1. 56 1. 56 1. 56 1. 61 1. 64 1. 67 1. 70 | 2. 11 | 1.54 | 1. 94
1. 95
1. 96
1. 96 | J. 68
J. 68 | 7460. 0 | 0. 4934 | | 0730 | 1. 53 | 1. 65 | 1.55 | 2. 11 | 1.54 | 1. 96 | 1.68 | | | | 0745 | 1.53 | 1. 65
1. 65
1. 65 | 1.55 | 2.11 | 1.54 | 1. 96 | J. 68 | 6730.0 | 0. 5224
0. 5499 | | 0800 | 1.53 | 1. 65 | 1 55 | 2.12 | 1.54 | 1.96 | 1.69 | 6330. 0 | 0. 5628 | | 0800 | 1. 53
1. 53
1. 53
1. 53
1. 53
1. 53
1. 53 | 1.66
1.66
1.66 | 1 56 | 2.12 | 1. 54 | 1. 96
1. 97
1. 97 | 1.69 | 5570. 0 | 0. 6083 | | 0900 | 1.53 | 1 66 | 1 56 | 2. 12 | 1 54 | 1. 97 | 1.69 | 4820. 0 | 0. 6772 | | 0945 | 1.53 | 1 66 | 1.56 | 2.12 | 1.54 | 1.97 | J. 69
J. 69
J. 69
J. 69 | | | | 1030 | 1 53 | 1. 66 | 1 56 | 2.12 | 1 54 | 1 97 | 1 69 | 3010.0 | 0.7670 | | 1130 | 1. 53 | 1 66 | 1. 56 | 2.12 | 1. 54 | 1.97
1.97
1.97 | 1.69 | 2300.0 | 0. 7240
0. 7670
0. 7951 | | 1200 | 1. 53 | 1 66 | 1 56 | 2 12 | 1. 54 | 1 97 | 1.69 | 2050. 0 | 0. 8202 | | 1300 | 1 53 | 1 66
1 66
1 66
1 66
1 84 | 1 56 | 2 12 | 1.54 | 1 97
1 97
1 97
2 04
2 08
2 14
2 16
2 16
2 16
2 16
2 16
2 16
2 16
2 16 | 1. 69 | 1700.0 | 0. 8480 | | 1400 | 1 53
1 78
1 79
1 80
1 83 | 1 84 | 1.61 | 2.16 | 1.54 | 2.04 | 1.79 | 1480.0 | 0. 8631 | | 1415 | 1 79 | 20 | 1 65 | 2 16 | 1 54 | 2.08 | 1.81 | 1490.0 | 0.8692 | | 1430 | 1 80 | 1 90 | 1 68 | 2 16 | 1 54 | 2 14 | 1.82 | 1490.0 | 0.8692
0.8753
0.8820
0.8895
0.9016
0.9143 | | 1445 | 1 83 | 1 90
1 90 | 1 69 | 2 16 | 1 54 | 2 16 | 1.83 | 1660.0 | 0.8820 | | 1500 | 1 83
1 83
1 83
1 83
1 83
1 83
1 83
1 83 | 1. 90 | 1.69 | 2 28 | 1. 62 | 2 16 | 1 87 | 1820.0 | 0.8895 | | 1515 | 1 83 | 1 91 | 1 70 | 2 28 | 1 62 | 2 16 | 1 87 | 1980.0 | 0.9016 | | 1545 | 1 83 | 1 91
1 91
1 91 | 1 70 | 2 28 | 1.62 | 2 16 | 1.87 | 2070.0 | 0.9143 | | 1600 | 1 83 | 1 91 | 1.70 | 2 32 | 1.63 | 2.16 | 1 88 | 2060. 0 | 0.9521 | | 1800 | 1 83 | 1 91 | 1 70 | 2.32 | 1.63 | 2 16 | 1.88 | 1650.0 | 0.7023 | | 1930 | 1 83 | 1 91 | 1 70 | 2 32 | 1 63 | 2 16 | 1 88 | 1320.0 | 0. 9521
0. 9993
1. 0181 | | 1945 | 1 83 | 1 91 | 1 70 | 2.32 | 1 63 | 2 16 | 1 88 | 1270.0 | 1 0233 | | 5000 | 1 83 | 1 92 | 1.70 | 2 32 | 1 63 | 2 16 | 1 88 | 1220.0 | 1 0283 | | 2015 | 1 83 | 1 92 | 1 70 | 2 32 | 1 63 | 2 16 | 1.88 | 1180.0 | 1. 0233
1. 0283
1. 0331 | | 2030 | 1 83 | 1 93 | 1 70 | 2.32 | 1 63 | 2 16 | 1 88 | 1140 0 | 1 0494 | | 2200 | 1 83 | 1 93 | 1 70 | 2 32 | 1 63 | 2 16 | 1 88 | 934 0 | 1 0761 | | 2400 | 1 83
1 83
1 83
1 83
1 83
1 83
1 83
1 83 | 1 93 | 1 70 | 2.32 | 1.63 | 2 16 | 1 88 | 934. 0
737. 0 | 1 1242 | | JAN. 10 | | | - / - | | 1. 00 | 2 | , | | | | 0000 | 1.83 | 1 93 | 1 70 | 2 32 | 1 63 | 2 16 | 1 88 | 737 0 | 1. 1242 | | 0600 | 1.83
1.83 | 1 93 | 1.70 | 2.32 | 1.63 | 2 16 | J. 88 | 426.0 | 1.1659 | | 1200 | 1.83 | 1 93 | 1, 70
1, 70
1, 70
1, 70
1, 70 | 2 32 | 1.63
1.63
1.63
1.63
1.63 | 2 16 | 1.88 | 737. 0
426. 0
304. 0 | 1. 1957 | | 1800 | 1.83 | 1 93 | 1.70 | 2.32 | 1 63 | 2.16 | 1.88 | 250. 0 | 1 2202 | | 2400 | 1. 83 | 1 93 | 1 70 | 2 32 | 1 63 | 2 16
2 16 | 1 88 | 212.0 | 1. 2202
1. 2410 | | JAN, 11 | | | | | | | | | | | 0000 | 1.83 | 1. 93 | 1 70 | 2 32 | FA 1 | 2. 16
2. 16
2. 16
2. 16
2. 16 | 1 88 | 212 0 | 1 2410 | | 0600 | 1.83
1.83 | 1 93 | 1.70 | 2.32 | 1.63 | 2 16 | 1 88 | 186.0 | 1 2592 | | 1200 | 1.83 | 1 93 | 1.70 | 2.32 | 1.63 | 2 16 | 1.88 | 163.0 | 1 2752 | | 1800 | 1.83 | 1 93 | 1.70 | 2 32 | 1 63 | 2 16 | 1 88 | 159.0 | 1 2909 | | 2400 | 1.83 | 1 93 | 1.70 | 2.32 | 1 63 | 2 16 | , 88 | 155.0 | 1 2700 | | | 1.03 | 1. 75 | 1. 70 | E. JE | 1. 03 | 2.10 | 1.00 | 133.0 | 1. 4704 | # STORM RAINFALL AND RUNOFF 08075000 BRAYS BAYOU AT HOUSTON, TEX. | MAR. 23 | ACCUMU-
LATED
RUNOFF | (CUBIC
FEET | LATED | ACCUPIU -
LATED
RAIN -
FALL
AT
GAGE-
GFR | LATED | ACCUMU-
LATED
RAIN-
FALL
AT
GAGE
308R | ACCUMU-
LATED
RAIN-
I-ALL
AT
GAGE
4760 | LATED
RAIN-
FALL | ACCUMU
LATED
RAIN
FALL
A1
GAGE
4800 | ACCUMU-
LATED
RAIN-
FALL
AT
GAGE
4910 | DATE
AND
TIME | |--|----------------------------|---|----------|--|----------|---|--|------------------------|---|---|---------------------| | MAR. 23 0000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | (INCHES) | PER
SECOND) | (INCHES) | | 0000 | | , ~ ~ * ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | | | . 1984 | MAR. 23-25 | STORM OF | | | | | | 0600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | _ | | | | | | | | | 0800 0.0 0.0 0.0 0.01 0.01 0.10 0.0 0.0 0. | 0.0054 | | | | | | | | | | | | 1000 0.0 0.0 0.0 0.01 0.01 0.10 0.0 0.0 | 0. 0125 | | | | | | | | | | | | 1800 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 0. 0161 | | | | | | | | | | | | 1800 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 0. 0196 | | | 0. 0 | 0. 0 | | | | 0. 0 | 0. 0 | | | 1900 0.0 0.0 0.0 0.02 0.01 0.10 0.33 0.0 0.03 110.0 0. 1930 0.0 0.0 0.0 0.02 0.01 0.10 0.33 0.0 0.03 110.0 0. 2000 0.0 0.0 0.0 0.02 0.14 0.10 1.04 0.21 0.13 110.0 0. 2000 0.0 0.0 0.0 0.02 0.14 0.10 1.04 0.21 0.13 110.0 0. 2015 0.0 0.0 0.0 0.04 0.22 0.10 1.04 0.21 0.14 110.0 0. 2015 0.0 0.0 0.01 0.08 0.29 0.10 1.04 0.21 0.14 110.0 0. 2045 0.23 0.04 0.15 0.29 0.10 1.04 0.21 0.16 110.0 0. 2045 0.23 0.04 0.15 0.29 0.10 1.04 0.21 0.23 110.0 0. 2100 0.42 0.28 0.18 0.29 0.22 1.04 0.25 0.33 110.0 0. 2115 0.59 0.30 0.18 0.29 0.22 1.04 0.25 0.38 110.0 0. 2130 0.61 0.30 0.18 0.29 0.22 1.04 0.25 0.38 111.0 0. 2145 0.61 0.30 0.18 0.29 0.22 1.04 0.25 0.38 111.0 0. 2245 0.61 0.30 0.18 0.29 0.51 1.04 0.25 0.38 111.0 0. 2230 0.61 0.30 0.18 0.29 0.51 1.04 0.25 0.38 111.0 0. 2245 0.61 0.30 0.18 0.29 0.51 1.04 0.25 0.38 111.0 0. 2245
0.61 0.30 0.18 0.29 0.51 1.04 0.25 0.38 110.0 0. 2230 0.61 0.30 0.18 0.29 0.51 1.04 0.25 0.38 110.0 0. 2245 0.61 0.30 0.18 0.29 0.51 1.04 0.26 0.41 160.0 0. 2245 0.61 0.30 0.18 0.29 0.51 1.04 0.26 0.41 160.0 0. 2245 0.61 0.30 0.18 0.29 0.51 1.04 0.26 0.41 160.0 0. 2330 0.61 0.30 0.18 0.29 0.51 1.04 0.26 0.41 160.0 0. 2345 0.61 0.30 0.18 0.29 0.51 1.04 0.26 0.41 160.0 0. 2345 0.61 0.30 0.18 0.29 0.51 1.04 0.26 0.41 160.0 0. 2345 0.61 0.30 0.18 0.29 0.51 1.04 0.26 0.41 160.0 0. 2345 0.61 0.30 0.18 0.29 0.52 1.04 0.26 0.42 130.0 0. 2345 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 130.0 0. 2345 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 130.0 0. 0000 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 130.0 0. 0000 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0000 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0000 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0000 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0000 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. | 0. 0266 | | | | | | | | | | | | 1945 0.0 0.0 0.0 0.02 0.02 0.10 0.33 0.0 0.03 110.0 0. 2000 0.0 0.0 0.0 0.02 0.14 0.10 1.04 0.71 0.13 110.0 0. 2015 0.0 0.0 0.0 0.04 0.22 0.10 1.04 0.71 0.14 110.0 0. 2030 0.0 0.0 1.0 0.08 0.29 0.10 1.04 0.71 0.14 110.0 0. 2045 0.23 0.04 0.15 0.29 0.10 1.04 0.71 0.23 110.0 0. 2100 0.42 0.28 0.18 0.29 0.22 1.04 0.70 0.33 110.0 0. 2115 0.59 0.30 0.18 0.29 0.22 1.04 0.70 0.33 110.0 0. 2115 0.59 0.30 0.18 0.29 0.22 1.04 0.70 0.38 111.0 0. 2130 0.61 0.30 0.18 0.29 0.22 1.04 0.70 0.38 111.0 0. 2145 0.61 0.30 0.18 0.29 0.22 1.04 0.70 0.38 111.0 0. 2200 0.61 0.30 0.18 0.29 0.22 1.04 0.70 0.38 220.0 0. 2200 0.61 0.30 0.18 0.29 0.51 1.04 0.70 0.38 220.0 0. 2215 0.61 0.30 0.18 0.29 0.51 1.04 0.70 0.41 1500.0 0. 2215 0.61 0.30 0.18 0.29 0.51 1.04 0.70 0.41 1600.0 0. 2230 0.61 0.30 0.18 0.29 0.51 1.04 0.70 0.41 1600.0 0. 2245 0.61 0.30 0.18 0.29 0.51 1.04 0.70 0.41 1630.0 0. 2245 0.61 0.30 0.18 0.29 0.51 1.04 0.70 0.41 1630.0 0. 2245 0.61 0.30 0.18 0.29 0.51 1.04 0.70 0.41 1630.0 0. 2330 0.61 0.30 0.18 0.29 0.51 1.04 0.70 0.41 1630.0 0. 2340 0.61 0.30 0.18 0.29 0.52 1.04 0.70 0.41 1800.0 0. 2345 0.61 0.30 0.18 0.29 0.52 1.04 0.70 0.41 1800.0 0. 2345 0.61 0.30 0.18 0.29 0.52 1.04 0.70 0.42 1490.0 0. 2345 0.61 0.30 0.18 0.29 0.52 1.04 0.70 0.42 1490.0 0. 2345 0.61 0.30 0.18 0.29 0.52 1.04 0.70 0.42 1490.0 0. 2340 0.61 0.30 0.18 0.30 0.52 1.04 0.70 0.42 1490.0 0. 2345 0.61 0.30 0.18 0.30 0.52 1.04 0.70 0.42 1490.0 0. 0030 0.61 0.30 0.18 0.30 0.52 1.04 0.70 0.42 1310.0 0. 0030 0.61 0.30 0.18 0.30 0.52 1.04 0.70 0.42 1310.0 0. 0030 0.62 0.30 0.18 0.30 0.52 1.04 0.70 0.42 846.0 0. 0030 0.62 0.30 0.18 0.30 0.52 1.04 0.70 0.42 846.0 0. 0030 0.62 0.30 0.18 0.30 0.52 1.04 0.70 0.42 846.0 0. 0030 0.62 0.30 0.18 0.30 0.52 1.04 0.70 0.42 846.0 0. 0030 0.62 0.30 0.18 0.30 0.52 1.04 0.70 0.42 846.0 0. 0030 0.62 0.30 0.18 0.30 0.52 1.04 0.70 0.42 846.0 0. | 0. 0329 | | | | | | | | 0. 0 | O. O | | | 1945 0.0 0.0 0.0 0.02 0.02 0.10 0.33 0.0 0.03 110.0 0. 2000 0.0 0.0 0.0 0.02 0.14 0.10 1.04 0.71 0.13 110.0 0. 2015 0.0 0.0 0.0 0.04 0.22 0.10 1.04 0.71 0.14 110.0 0. 2030 0.0 0.0 1.0 0.08 0.29 0.10 1.04 0.71 0.14 110.0 0. 2045 0.23 0.04 0.15 0.29 0.10 1.04 0.71 0.23 110.0 0. 2100 0.42 0.28 0.18 0.29 0.22 1.04 0.70 0.33 110.0 0. 2115 0.59 0.30 0.18 0.29 0.22 1.04 0.70 0.33 110.0 0. 2115 0.59 0.30 0.18 0.29 0.22 1.04 0.70 0.38 111.0 0. 2130 0.61 0.30 0.18 0.29 0.22 1.04 0.70 0.38 111.0 0. 2145 0.61 0.30 0.18 0.29 0.22 1.04 0.70 0.38 111.0 0. 2200 0.61 0.30 0.18 0.29 0.22 1.04 0.70 0.38 220.0 0. 2200 0.61 0.30 0.18 0.29 0.51 1.04 0.70 0.38 220.0 0. 2215 0.61 0.30 0.18 0.29 0.51 1.04 0.70 0.41 1500.0 0. 2215 0.61 0.30 0.18 0.29 0.51 1.04 0.70 0.41 1600.0 0. 2230 0.61 0.30 0.18 0.29 0.51 1.04 0.70 0.41 1600.0 0. 2245 0.61 0.30 0.18 0.29 0.51 1.04 0.70 0.41 1630.0 0. 2245 0.61 0.30 0.18 0.29 0.51 1.04 0.70 0.41 1630.0 0. 2245 0.61 0.30 0.18 0.29 0.51 1.04 0.70 0.41 1630.0 0. 2330 0.61 0.30 0.18 0.29 0.51 1.04 0.70 0.41 1630.0 0. 2340 0.61 0.30 0.18 0.29 0.52 1.04 0.70 0.41 1800.0 0. 2345 0.61 0.30 0.18 0.29 0.52 1.04 0.70 0.41 1800.0 0. 2345 0.61 0.30 0.18 0.29 0.52 1.04 0.70 0.42 1490.0 0. 2345 0.61 0.30 0.18 0.29 0.52 1.04 0.70 0.42 1490.0 0. 2345 0.61 0.30 0.18 0.29 0.52 1.04 0.70 0.42 1490.0 0. 2340 0.61 0.30 0.18 0.30 0.52 1.04 0.70 0.42 1490.0 0. 2345 0.61 0.30 0.18 0.30 0.52 1.04 0.70 0.42 1490.0 0. 0030 0.61 0.30 0.18 0.30 0.52 1.04 0.70 0.42 1310.0 0. 0030 0.61 0.30 0.18 0.30 0.52 1.04 0.70 0.42 1310.0 0. 0030 0.62 0.30 0.18 0.30 0.52 1.04 0.70 0.42 846.0 0. 0030 0.62 0.30 0.18 0.30 0.52 1.04 0.70 0.42 846.0 0. 0030 0.62 0.30 0.18 0.30 0.52 1.04 0.70 0.42 846.0 0. 0030 0.62 0.30 0.18 0.30 0.52 1.04 0.70 0.42 846.0 0. 0030 0.62 0.30 0.18 0.30 0.52 1.04 0.70 0.42 846.0 0. 0030 0.62 0.30 0.18 0.30 0.52 1.04 0.70 0.42 846.0 0. | 0. 0343 | | | | | | | | 0.0 | 0.0 | | | 2000 0.0 0.0 0.0 0.02 0.14 0.10 1 04 0.21 0.13 110.0 0. 2015 0.0 0.0 0.04 0.22 0.10 1.04 0.21 0.14 110.0 0. 2030 0.0 0.01 0.08 0.29 0.10 1.04 0.21 0.14 110.0 0. 2045 0.23 0.04 0.15 0.29 0.10 1.04 0.21 0.23 110.0 0. 2100 0.42 0.28 0.18 0.29 0.22 1.04 0.26 0.33 110.0 0. 2115 0.59 0.30 0.18 0.29 0.22 1.04 0.26 0.38 110.0 0. 2130 0.61 0.30 0.18 0.29 0.22 1.04 0.26 0.38 111.0 0. 2145 0.61 0.30 0.18 0.29 0.22 1.04 0.26 0.38 111.0 0. 2145 0.61 0.30 0.18 0.29 0.22 1.04 0.26 0.38 220.0 0. 2200 0.61 0.30 0.18 0.29 0.51 1.04 0.26 0.41 577.0 0. 2215 0.61 0.30 0.18 0.29 0.51 1.04 0.26 0.41 577.0 0. 2230 0.61 0.30 0.18 0.29 0.51 1.04 0.26 0.41 1160.0 0. 2230 0.61 0.30 0.18 0.29 0.51 1.04 0.26 0.41 1800.0 0. 2230 0.61 0.30 0.18 0.29 0.51 1.04 0.26 0.41 1800.0 0. 2235 0.61 0.30 0.18 0.29 0.51 1.04 0.26 0.41 1800.0 0. 2330 0.61 0.30 0.18 0.29 0.51 1.04 0.26 0.41 1800.0 0. 2345 0.61 0.30 0.18 0.29 0.52 1.04 0.26 0.41 1800.0 0. 2345 0.61 0.30 0.18 0.29 0.52 1.04 0.26 0.41 1800.0 0. 2346 0.61 0.30 0.18 0.29 0.52 1.04 0.26 0.41 1800.0 0. 2347 0.61 0.30 0.18 0.29 0.52 1.04 0.26 0.41 1800.0 0. 2348 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 2348 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 2349 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 2340 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 2345 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 2346 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 2347 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 2348 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 2340 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 2340 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 2345 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. | 0. 0350 | | | | | | | | | | | | 2030 0.0 0.01 0.08 0.29 0.10 1.04 0.71 0.16 110.0 0. 2045 0.23 0.04 0.15 0.29 0.10 1.04 0.71 0.23 110.0 0. 2100 0.42 0.28 0.18 0.29 0.22 1.04 0.75 0.33 110.0 0. 2115 0.59 0.30 0.18 0.29 0.22 1.04 0.75 0.38 110.0 0. 2130 0.61 0.30 0.18 0.29 0.22 1.04 0.75 0.38 111.0 0. 2145 0.61 0.30 0.18 0.29 0.22 1.04 0.75 0.38 111.0 0. 2200 0.61 0.30 0.18 0.29 0.22 1.04 0.76 0.41 1577.0 0. 2215 0.61 0.30 0.18 0.29 0.51 1.04 0.76 0.41 1160.0 0. 2230 0.61 0.30 0.18 0.29 0.51 1.04 0.76 0.41 1160.0 0. 2245 0.61 0.30 0.18 0.29 0.51 1.04 0.76 0.41 1160.0 0. 2330 0.61 0.30 0.18 0.29 0.51 1.04 0.76 0.41 1630.0 0. 2300 0.61 0.30 0.18 0.29 0.51 1.04 0.76 0.41 1800.0 0. 2300 0.61 0.30 0.18 0.29 0.51 1.04 0.76 0.41 1800.0 0. 2330 0.61 0.30 0.18 0.29 0.51 1.04 0.76 0.41 1800.0 0. 2345 0.61 0.30 0.18 0.29 0.52 1.04 0.76 0.41 1800.0 0. 2330 0.61 0.30 0.18 0.29 0.52 1.04 0.76 0.41 1800.0 0. 2345 0.61 0.30 0.18 0.29 0.52 1.04 0.76 0.41 1800.0 0. 2346 0.61 0.30 0.18 0.29 0.52 1.04 0.76 0.41 1800.0 0. 2347 0.61 0.30 0.18 0.30 0.52 1.04 0.76 0.41 1300.0 0. 2340 0.61 0.30 0.18 0.30 0.52 1.04 0.76 0.42 1310.0 0. 2400 0.61 0.30 0.18 0.30 0.52 1.04 0.76 0.42 1310.0 0. 0000 0.62 0.30 0.18 0.30 0.52 1.04 0.76 0.42 1310.0 0. 0030 0.62 0.30 0.18 0.30 0.52 1.04 0.76 0.42 1310.0 0. 0030 0.62 0.30 0.18 0.30 0.52 1.04 0.76 0.42 1310.0 0. 0030 0.62 0.30 0.18 0.30 0.52 1.04 0.76 0.42 1310.0 0. 0030 0.62 0.30 0.18 0.30 0.52 1.04 0.76 0.42 1300.0 0. 0030 0.62 0.30 0.18 0.30 0.52 1.04 0.76 0.42 1300.0 0. | 0. 0354 | | | | | | 0. 02 | 0. 02 | 0.0 | 0. 0 | | | 2030 0, 0 0, 0 1 0, 08 0, 29 0, 10 1, 04 0, 21 0, 16 110, 0 0, 2045 0, 23 0, 04 0, 15 0, 29 0, 10 1, 04 0, 21 0, 23 110, 0 0, 2100 0, 42 0, 28 0, 18 0, 29 0, 22 1, 04 0, 25 0, 33 110, 0 0, 2115 0, 59 0, 30 0, 18 0, 29 0, 22 1, 04 0, 25 0, 38 110, 0 0, 2130 0, 61 0, 30 0, 18 0, 29 0, 22 1, 04 0, 25 0, 38 111, 0 0, 2145 0, 61 0, 30 0, 18 0, 29 0, 22 1, 04 0, 25 0, 38 220, 0 0, 2200 0, 61 0, 30 0, 18 0, 29 0, 22 1, 04 0, 26 0, 41 177, 0 0, 2215 0, 61 0, 30 0, 18 0, 29 0, 51 1, 04 0, 26 0, 41 1160, 0 0, 2215 0, 61 0, 30 0, 18 0, 29 0, 51 1, 04 0, 26 0, 41 1160, 0 0, 2215 0, 61 0, 30 0, 18 0, 29 0, 51 1, 04 0, 26 0, 41 1160, 0 0, 2245 0, 61 0, 30 0, 18 0, 29 0, 51 1, 04 0, 26 0, 41 1630, 0 0, 2300 0, 61 0, 30 0, 18 0, 29 0, 51 1, 04 0, 26 0, 41 1630, 0 0, 2300 0, 61 0, 30 0, 18 0, 29 0, 51 1, 04 0, 26 0, 41 1800, 0 0, 2300 0, 61 0, 30 0, 18 0, 29 0, 51 1, 04 0, 26 0, 41 1800, 0 0, 2300 0, 61 0, 30 0, 18 0, 29 0, 52 1, 04 0, 26 0, 41 1800, 0 0, 2345 0, 61 0, 30 0, 18 0, 29 0, 52 1, 04 0, 26 0, 41 1800, 0 0, 2345 0, 61 0, 30 0, 18 0, 29 0, 52 1, 04 0, 26 0, 41 1800, 0 0, 2345 0, 61 0, 30 0, 18 0, 30 0, 52 1, 04 0, 26 0, 41 1670, 0 0, 2400 0, 61 0, 30 0, 18 0, 30 0, 52 1, 04 0, 26 0, 42 1580, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, | 0. 0359 | | | | | | 0. 14 | 0. 02 | 0.0 | 0.0 | | | 2045 | 0. 0363 | | | | | | 0. 22 | 0. 04 | 0.0 | 0.0 | | | 2100 0.42 0.28 0.18 0.29 0.22 1.04 0.26 0.33 110.0 0. 2115 0.59 0.30 0.18 0.29 0.22 1.04 0.26 0.38 110.0 0. 2130 0.61 0.30 0.18 0.29 0.22 1.04 0.26 0.38 111.0 0. 2145 0.61 0.30 0.18 0.29 0.22 1.04 0.26 0.38 111.0 0. 2245 0.61 0.30 0.18 0.29 0.51 1.04 0.26 0.41 579.0 0. 2200 0.61 0.30 0.18 0.29 0.51 1.04 0.26 0.41 579.0 0. 2215 0.61 0.30 0.18 0.29 0.51 1.04 0.26 0.41 1160.0 0. 2230 0.61 0.30 0.18 0.29 0.51 1.04 0.26 0.41 1160.0 0. 2245 0.61 0.30 0.18 0.29 0.51 1.04 0.26 0.41 1800.0 0. 2330 0.61 0.30 0.18 0.29 0.51 1.04 0.26 0.41 1800.0 0. 2330 0.61 0.30 0.18 0.29 0.51
1.04 0.26 0.41 1800.0 0. 2330 0.61 0.30 0.18 0.29 0.52 1.04 0.26 0.41 1800.0 0. 2330 0.61 0.30 0.18 0.29 0.52 1.04 0.26 0.41 1800.0 0. 2345 0.61 0.30 0.18 0.39 0.52 1.04 0.26 0.41 1470.0 0. 2400 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1490.0 0. 2400 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1490.0 0. 2400 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0030 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0030 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0030 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0030 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0030 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0030 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0030 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0030 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0030 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1330.0 0. 0040 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1330.0 0. | 0. 0368 | | | | | | | | | | | | 2115 | 0. 0372 | | | | | | | | 0. 04 | 0. 23 | | | 2200 0.61 0.30 0.18 0.29 0.51 1.04 0.26 0.41 379.0 0. 2215 0.61 0.30 0.18 0.29 0.51 1.04 0.26 0.41 1160.0 0. 2230 0.61 0.30 0.18 0.29 0.51 1.04 0.26 0.41 1160.0 0. 2245 0.61 0.30 0.18 0.29 0.51 1.04 0.26 0.41 1800.0 0. 2300 0.61 0.30 0.18 0.29 0.52 1.04 0.26 0.41 1800.0 0. 2330 0.61 0.30 0.18 0.29 0.52 1.04 0.26 0.41 1800.0 0. 2345 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.41 1800.0 0. 2400 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1580.0 0. 2400 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1490.0 0. MAR. 24 0000 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1490.0 0. 0030 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0030 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0030 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0030 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0200 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0200 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0430 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 346.0 0. 0430 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 346.0 0. 0430 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 346.0 0. 0430 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 340.0 0. 0430 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 340.0 0. | 0. 0376 | | | | | | | | | | | | 2200 0.61 0.30 0.18 0.29 0.51 1.04 0.26 0.41 379.0 0. 2215 0.61 0.30 0.18 0.29 0.51 1.04 0.26 0.41 1160.0 0. 2230 0.61 0.30 0.18 0.29 0.51 1.04 0.26 0.41 1160.0 0. 2245 0.61 0.30 0.18 0.29 0.51 1.04 0.26 0.41 1800.0 0. 2300 0.61 0.30 0.18 0.29 0.52 1.04 0.26 0.41 1800.0 0. 2330 0.61 0.30 0.18 0.29 0.52 1.04 0.26 0.41 1800.0 0. 2345 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.41 1800.0 0. 2400 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1580.0 0. 2400 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1490.0 0. MAR. 24 0000 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1490.0 0. 0030 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0030 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0030 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0030 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0200 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0200 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0430 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 346.0 0. 0430 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 346.0 0. 0430 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 346.0 0. 0430 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 340.0 0. 0430 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 340.0 0. | 0. 0381 | | | | | | 0. 29 | 0. 18 | | | | | 2200 0.61 0.30 0.18 0.29 0.51 1.04 0.26 0.41 379.0 0. 2215 0.61 0.30 0.18 0.29 0.51 1.04 0.26 0.41 1160.0 0. 2230 0.61 0.30 0.18 0.29 0.51 1.04 0.26 0.41 1160.0 0. 2245 0.61 0.30 0.18 0.29 0.51 1.04 0.26 0.41 1800.0 0. 2300 0.61 0.30 0.18 0.29 0.52 1.04 0.26 0.41 1800.0 0. 2330 0.61 0.30 0.18 0.29 0.52 1.04 0.26 0.41 1800.0 0. 2345 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.41 1800.0 0. 2400 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1580.0 0. 2400 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1490.0 0. MAR. 24 0000 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1490.0 0. 0030 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0030 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0030 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0030 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0200 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0200 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0430 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 346.0 0. 0430 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 346.0 0. 0430 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 346.0 0. 0430 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 340.0 0. 0430 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 340.0 0. | 0. 0386 | | | | | | 0. 29 | 0. 18 | 0. 30 | 0. 61 | | | 2200 0.61 0.30 0.18 0.29 0.51 1.04 0.26 0.41 379.0 0. 2215 0.61 0.30 0.18 0.29 0.51 1.04 0.26 0.41 1160.0 0. 2230 0.61 0.30 0.18 0.29 0.51 1.04 0.26 0.41 1160.0 0. 2245 0.61 0.30 0.18 0.29 0.51 1.04 0.26 0.41 1800.0 0. 2300 0.61 0.30 0.18 0.29 0.52 1.04 0.26 0.41 1800.0 0. 2330 0.61 0.30 0.18 0.29 0.52 1.04 0.26 0.41 1800.0 0. 2345 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.41 1800.0 0. 2400 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1580.0 0. 2400 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1490.0 0. MAR. 24 0000 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1490.0 0. 0030 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0030 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0030 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0030 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0200 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0200 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0430 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 346.0 0. 0430 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 346.0 0. 0430 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 346.0 0. 0430 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 340.0 0. 0430 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 340.0 0. | 0. 0394 | | | | | | 0. 29 | 0. 18 | | | | | MAR. 24 0000 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1470.0 0. 0030 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0100 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0200 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1130.0 0. 0300 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 846.0 0. 0430 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 846.0 0. 0430 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 516.0 0. 0400 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 310.0 0. | 0.0418 | | | | | | Λ 30 | Λ 10 | 0. 30 | 0. 61 | 2200 | | MAR. 24 0000 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1470.0 0. 0030 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0100 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0200 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1130.0 0. 0300 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 846.0 0. 0430 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 846.0 0. 0430 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 516.0 0. 0400 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 310.0 0. | 0. 0465 | | 0.41 | 0.26 | 1.04 | 0. 51 | 0. 29 | 0. 18 | 0. 30 | 0. 61 | 2215 | | MAR. 24 0000 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1470.0 0. 0030 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0100 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0200 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1130.0 0. 0300 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 846.0 0. 0430 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 846.0 0. 0430 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 516.0 0. 0400 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 310.0 0. | 0. 0532 | | | | | | 0. 29 | 0. 18 | 0. 30 | 0. 61 | | | 0000 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1470.0 0. 0030 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0100 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0200 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1130.0 0. 0300 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 846.0 0. 0300 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 846.0 0. 0430 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 516.0 0. 0430 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 516.0 0. 0600 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 330.0 0. | 0. 0606 | | 0. 41 | 0.26 | 1.04 | | 0. 29 | 0. 18 | 0. 30 | 0. 61 | 2245 | | 0000 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1470.0 0. 0030 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0100 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0200 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1130.0 0. 0300 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 846.0 0. 0300 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 846.0 0. 0430 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 516.0 0. 0430 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 516.0 0. 0600 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 330.0 0. | 0. 0716 | | 0.41 | 0.26 | 1.04 | | 0. 29 | 0. 18 | 0. 30 | 0. 61 | 2300 | | 0000 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1470.0 0. 0030 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0100 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0200 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1130.0 0. 0300 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 846.0 0. 0300 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 846.0 0. 0430 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 516.0 0. 0430 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 516.0 0. 0600 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 330.0 0. | 0.0818 | | 0. 41 | 0.26 | 1.04 | 0. 52 | 0. 29 | 0. 18 | 0. 30 | °0. 61 | 2330 | | 0000 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1470.0 0. 0030 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0100 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0200 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1130.0 0. 0300 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 846.0 0. 0300 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 846.0 0. 0430 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 516.0 0. 0430 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 516.0 0. 0600 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 330.0 0. | 0. 0882 | | 0 42 | 0.26 | 1.04 | | 0. 30 | 0. 18 | 0. 30 | 0. 61 | 2345 | | 0000 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1470.0 0. 0030 0.61 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0100 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1310.0 0. 0200 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 1130.0 0. 0300 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 846.0 0. 0300 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 846.0 0. 0430 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42
516.0 0. 0430 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 516.0 0. 0600 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 330.0 0. | 0. 0974 | 1490. 0 | 0.42 | 0.26 | 1.04 | 0. 52 | 0. 30 | 0.18 | 0. 30 | 0. 61 | 2400 | | 0030 0.61 0.30 0.18 0.30 0.52 1.04 0.46 0.42 1310.0 0.00 0.00 0.62 0.30 0.18 0.30 0.52 1.04 0.76 0.42 1130.0 0.00 0.00 0.42 1130.0 0.00 0.00 0.00 0.42 1130.0 0.00 | | | | | | | | | | | | | 0100 0.62 0.30 0.18 0.30 0.52 1.04 0.76 0.42 1130.0 0. 0200 0.62 0.30 0.18 0.30 0.52 1.04 0.76 0.42 846.0 0. 0300 0.62 0.30 0.18 0.30 0.52 1.04 0.76 0.42 846.0 0. 0430 0.62 0.30 0.18 0.30 0.52 1.04 0.76 0.42 516.0 0. 0430 0.62 0.30 0.18 0.30 0.52 1.04 0.76 0.42 516.0 0. 0400 0.62 0.30 0.18 0.30 0.52 1.04 0.76 0.42 430.0 0. | 0. 0974 | | | | | | | | | | | | 0200 | 0.1081 | | | | | | | | 0. 30 | 0. 61 | | | 0300 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 664.0 0. 0430 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 516.0 0. 0600 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 430.0 0. | 0. 1219 | | | | | | | | 0. 30 | 0. 62 | | | 0430 | 0. 1357 | | | | | | | | | | | | 0430 | 0. 1493 | | | | | | 0.30 | O. 18 | | | | | 0600 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 430.0 0.
0900 0.62 0.30 0.18 0.30 0.52 1.04 0.26 0.42 345.0 0. | 0. 1619 | | | | | | 0. 30 | 0.18 | | | | | 990 | 0. 1777 | | 0. 42 | | 1.04 | | 0.30 | 0.18 | 0. 30 | | | | | 0. 1946 | | | 0. 26 | 1.04 | | 0. 30 | 0. 18 | | | | | 1200 0.62 0.30 0.19 0.30 0.52 1.04 0.26 0.42 290.0 0. | 0. 2159 | | | 0.26 | 1. 04 | | 0. 30 | 0.19 | 0. 30 | 0. 62 | 1200 | | 1800 0.62 0.30 0.19 0.30 0.52 1.04 0.26 0.42 240.0 0. | 0. 2394 | 240. 0 | 0. 42 | 0.26 | 1. 04 | 0. 52 | 0. 30 | 0. 19 | 0. 30 | 0. 62 | 1800 | | 2400 0.62 0.30 0.19 0.30 0.52 1.04 0.26 0.42 215.0 0. | 0. 2710 | 215.0 | 0. 42 | | | 0. 52 | 0. 30 | 0. 19 | 0. 30 | 0.62 | 2400 | | MAR. 25 | | | | | | | | | | | MAR. 25 | | 0000 0.62 0.30 0.19 0.30 0.52 1.04 0.26 0.42 215.0 0. | 0. 2710 | 215.0 | 0. 42 | 0.26 | 1.04 | 0. 52 | 0. 30 | 0. 19 | 0. 30 | 0. 62 | 0000 | | 1200 0.62 0.30 0.19 0.30 0.52 1.04 0.05 0.42 180.0 0 | 0. 3063 | 180.0 | 0. 42 | | 1.04 | 0. 52 | 0.30 | 0.19 | | | | | 1200 0.62 0.30 0.19 0.30 0.52 1.04 0.26 0.42 180.0 0.240 0.62 0.30 0.19 0.30 0.52 1.04 0.26 0.42 160.0 0. | 0. 3220 | 160. 0 | 0. 42 | 0.26 | 1. 04 | 0. 52 | 0. 30 | 0. 19 | 0. 30 | 0. 62 | 2400 | # SIMS BAYOU DRAINAGE BASIN The locations of data-collection sites in and near the Sims Bayou drainage basin are shown in figure 14. Berry Bayou is shown as a separate drainage basin within the Sims Bayou section. Weighted-mean rainfall for the upper portion of the drainage basin above the Hiram Clarke Street station, based on two rain gages, for the 1984 water year was 29.70 inches, or 18.49 inches less than the 30-year (1941-70) average of 48.19 inches for Houston. The monthly totals, in inches, for the 1984 water year weighted-mean rainfall are as follows: Oct. Nov. Dec. Jan. Feb. June July Total Mar. Apr. May Aug. Sep. 2.21 1.21 2.37 2.66 2.17 1.20 0.47 2.54 1.56 1.82 7.49 4.00 29.70 Weighted-mean rainfall in the drainage basin above the Telephone Road station (station 08075500), based on six rain gages, for the 1984 water year was 34.31 inches or 13.88 inches less than the 30-year (1941-70) average of 48.19 inches for Houston. The monthly totals, in inches, for the 1984 water-year weighted-mean rainfall are as follows: Dec. Jan. Feb. Mar. Apr. May June July Aug. Sep. Total Oct. Nov. 3.55 2.30 1.94 1.86 34.31 1.73 3.73 2.68 1.31 0.47 2.67 7.47 4.60 The storms of Jan. 8-10, and Aug. 12-13 were selected for analysis at staation 08075400, Sims Bayou at Hiram Clarke Street. The storm of Jan. 9-11 was selected for analysis at station 08075470, Sims Bayou at Martin Luther King Blvd. The storm of Jan. 8-12 was selected for analysis at station 08075500, Sims Bayou at Houston. Figure 14 - Locations of data-collection sites in and near the Sims Bayou drainage basin TX-35 Kev. 5/80 # UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY-TEXAS DISTRICT ANNUAL STORM RAINFALL-RUNOFF SUMMARY DATA Table 13. -- Storm rainfall-runoff data, 1984 Water Year, Sims Bayou | Date of Storm | 85% | Weighted | Rainfall
Maximum Incr | Rainfall (inches)
Maximum Increment Recorded in Basin | ed in Basin | Runoff | Ratio
runoff to | Maximum
discharge | |------------------|---------|------------|------------------------------|--|-----------------------|----------|--------------------|------------------------------| | | (hours) | Total | 15-minute 30-minute | 30-minute | 60-minute | (inches) | rainfall | $(\mathrm{ft}^3/\mathrm{s})$ | | | | Sims B | ayou at Hirar
(Drainage / | Bayou at Hiram Clarke St., Houston, TX.
(Drainage Area 20.2 mi. ²) | Houston, TX
ni.2) | | | | | Jan. 8-10, 1984 | 5.5 | 2.23 | 0:30 | 09.0 | 0.96 | 1.60 | 0.72 | 1500* | | | | | | | | | | | | Aug. 12-13, 1984 | 1.0 | 2.83 | 0.80 | 1.59 | 3.04 | 0.65 | 0.23 | 1010 | | -101 | | | | | | | | | | _ | Sims Bayon | at Martin L
(Drainage A | Bayou at Martin Luther King Blvd., Houston, TX
(Drainage Area 48.4 mi. ²) | vd., Houston
ni.²) | , TX | | | | Jan. 9-10, 1984 | 5.5 | 2.16 | 0.42 | 0.84 | 0.96 | 1 | 8 | 25.90* | · | * - Peak Discharge/Gage Height for 1984 Water Year UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY-TEXAS DISTRICT TX-35 Rev. 5/80 ANNUAL STORM RAINFALL-RUNOFF SUMMARY DATA Table 13. -- Storm rainfall-runoff data, 1984 Water Year, Sims Bayou--Continued | Date of Storm | 85%
Duration | Weighted | Rainfall
Maximum Incr | Rainfall (inches)
Maximum Increment Recorded in Basin | ed in Basin | Runoff | Ratio
runoff to | Maximum | |-----------------|-----------------|----------|--|--|-------------|----------|--------------------|--------------| | | (hours) | Total | 15-minute 30-minute | 30-minute | 60-minute | (inches) | rainfall | (ft^{3}/s) | | | | | Sims Bayou at Houston, TX.
(Drainage Area 63.0 mi. ²) | at Houston, T
ea 63.0 mi | , ż) | | | | | Jan. 8-12, 1984 | 12.5 | 2.24 | 0.42 | 0.84 | 96.0 | 1.45 | 0.65 | 2540* | ٠ | , | - | | | | | | | | | | | | | | | * - Peak Discharge for 1984 Water Year ### 08075400 SIMS BAYOU AT HIRAM CLARKE STREET, HOUSTON, TX LOCATION.--Lat 29°37'07", long 95°26'45", Harris County, Hydrologic Unit 12040104, on right bank at downstream side of bridge on Hiram Clarke Street in southwest Houston, 12.7 mi upstream from gage Sims Bayou at Houston, and 19.7 mi upstream from mouth. DRAINAGE AREA. -- 20.2 mi2. ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--August 1964 to current year (discharge measurements and supplemental peak discharges only Dec. 6, 1978, to Aug. 31, 1979). GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is National Geodetic Vertical Datum of 1929, 1959 adjustment; unadjusted for land-surface subsidence. Telemetry located at station. REMARKS.--Water-discharge records fair. Channel bed was lowered 5 to 6 ft during rectification of 1978. No known diversion above station. Low flow is partly sustained by sewage effluent from Houston suburbs. Records furnished by Houston Lighting and Power Co. show that during the current year about 428 acre-ft of ground water was used for cooling purposes then released to the bayou about 200 ft upstream from gage. AVERAGE DISCHARGE. -- 19 years (water years 1965-78, 1980-84), 28.7 ft 3/s (20,790 acre-ft/yr). EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 4,660 ft 3/s Sept 19, 1983 (elevation, 54.50 ft); maximum elevation, 57.12 ft June 15, 1976, occurred prior to 1978 channel rectification; minimum daily discharge, 1.5 ft 3/s July 26, 1965. EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 700 ft 3/s and maximum (*): | Date | Time | Discharge
(ft³/s) | Elevation
(ft) | |---------|---------------|----------------------|-------------------| | Jan. 9 | 07 0 0 | *1,500 | 45.92 | | Aug. 12 | 1800 | 1,010 | 44.62 | Minimum daily discharge, 11 ft 3/s for many days. | | | DISCHA | RGE, IN (| CUBIC FEET | | ND, WATER
MEAN VALU | | OBER 1983 | TO SEPTE | MBER 1984 | | | |--------------------------------------|--------------------------------|---------------------------------|---------------------------------|-----------------------------------|----------------------------------|----------------------------------|--------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------------------|----------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4 | 14
13
13 | 16
14
13 | 18
17
55 | 16
16
14 | 19
31
34 | 18
17
17 | 12
19
14 | 16
15
16 | 15
15
13 | 20
20
16 | 16
17
18 | 36
132
54 | | 4
5 | 13
13 | 14
19 | 20
16 | 14
14 | 21
19 | 18
20 | 12
11 | 14
13 | 13
15 | 15
15 | 41
37 | 19
16 | | 6
7
8
9 | 16
13
14
14 | 71
16
16
22
19 | 14
13
13
13
26 | 14
15
15
760
400 | 18
17
18
102
41 | 18
17
16
16
17 |
11
13
13
12
13 | 14
14
13
13 | 114
51
14
12
11 | 15
16
18
17
17 | 40
45
20
45
27 | 12
11
13
13 | | 11
12
13
14 | 13
11
12
11 | 15
16
16
16 | 47
16
13
12
13 | 150
40
25
20
18 | 26
48
30
24
20 | 17
21
18
16 | 12
13
13
13 | 14
14
15
14 | 11
14
12
12
12 | 17
17
18
19
20 | 21
245
105
75
225 | 13
13
13
12
34 | | 16
17
18
19
20 | 13
18
14
17
12 | 15
16
16
17
17 | 66
24
16
14
14 | 17
18
19
20
19 | 21
20
19
19
27 | 16
17
17
45
16 | 13
13
13
13 | 14
15
28
204
80 | 12
13
12
13
15 | 21
20
26
45
23 | 56
17
15
14
13 | 27
12
11
11 | | 21
22
23
24
25 | 12
13
12
11 | 17
18
24
19
17 | 37
19
19
20
20 | 20
20
192
55
25 | 25
22
23
19
19 | 16
15
16
23
15 | 15
14
14
13
15 | 21
15
14
15
15 | 12
12
12
13 | 23
24
24
25
26 | 12
12
13
94
90 | 73
54
16
14
14 | | 26
27
28
29
30
31 | 12
11
12
13
12 | 17
18
12
12
33 | 21
22
19
19
19 | 24
24
25
25
30
21 | 54
30
20
19 | 15
14
13
12
12
12 | 15
16
17
17
18 | 14
14
15
16
15 | 13
13
12
17
14 | 20
19
75
37
19
16 | 22
19
13
12
11 | 12
11
12
11
12 | | TOTAL
MEAN
MAX
MIN
AC-FT | 401
12.9
18
11
795 | 566
18.9
71
12
1120 | 673
21.7
66
12
1330 | 2085
67.3
760
14
4140 | 805
27.8
102
17
1600 | 535
17.3
45
12
1060 | 413
13.8
19
11
819 | 723
23.3
204
13
1430 | 530
17.7
114
11
1050 | 703
22.7
75
15
1390 | 1402
45.2
245
11
2780 | 704
23.5
132
11
1400 | CAL YR 1983 TOTAL 17671 MEAN 48.4 MAX 2130 MIN 11 AC-FT 35050 WTR YR 1984 TOTAL 9540 MEAN 26.1 MAX 760 MIN 11 AC-FT 18920 # 08075400 SIMS BAYOU AT HIRAM CLARKE STREET, HOUSTON, TX--Continued WATER-QUALITY RECORDS PERIOD OF RECORD. -- Chemical, biochemical, and pesticide analyses: October 1970 to current year. ### WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 | DATE | TIM | | STRE
FLO
INST
TANE
(CF | W,
An-
Ous | SPE-
CIF
CON-
DUC'
ANCI
(UMH | IC
-
F- (
E | PH
(STAND-
ARD
UNITS) | AT | | COE | AT- | | | SOL | EN,
S-
VED | OXYG
DI
SOL
(PE
CE
SAT
ATI | S-
VED
R-
NT
UR- | OXYG
DEMAI
BIO-
CHEI
ICAI
5 DI
(MG) | ND,
-
M-
L,
AY | COLI-
FORM,
FECAI
0.7
UM-MF
(COLS.
100 MI | ., | STREP-
TOCOCCI
FECAL,
KF AGAR
(COLS.
PER
100 ML) | |------------------|------------------------------------|---|--|--|---|--|--|---|---|---|-------------------------------------|----------------------------------|---|---|-----------------------------------|--|---|---|----------------------------|---|----|--| | FEB 06 | 141 | 5 | | 17 | ; | 865 | 8.2 | | 16.0 | | 20 | 12 | | 1 | 5.8 | | 158 | : | 3.8 | K1 | 2 | К10 | | JUL
02 | 132 | | | 21 | , | 905 | 7.1 | 3 : | 28.0 | | 40 | 12 | | | 4.0 | | 51 | | 7.4 | 19 | 0 | 190 | | AUG
07 | 134 | | | 36 | | 533 | 7.0 | | 30.0 | | 70 | 60 | | | 5.1 | | 67 | | 7.3 | 88 | | 230 | | 12 | 150
190
230 | 00 | | 97
92 8
3 62 | | 314
157
209 | | | | | 140
300
190 | 3 90
400
2 50 | ı | | | | | | | | - | •• | | 12
13 | 100 | | | 94 | | 241 | • | | | | 230 | 140 | | | | , | | | | | - | | | DATE | HARI
NESS
(MG/
AS
CACO | L | HAR
NES
NONC
BONA
(MG
CAC | S,
AR-
TE
/L | CALC
DIS-
SOLV
(MG, | -
VED
/L | MAGNE-
SIUM,
DIS-
SOLVEI
(MG/L
AS MG) | SOD:
DIS
SOL'
(MC | S- ' | SOR | ON | S I
D I | | ALK
LINI
FIE
(MG
AS | TY
LD
/L | SULF
DIS
SOL
(MG
AS S | -
VED
/L | CHLO
RIDI
DIS-
SOLV
(MG, | E,
VED
/L | FLUO-
RIDE,
DIS-
SOLVE
(MG/L
AS F) | D | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | | FEB
06 | 1 | 80 | | 0 | 51 | | 13 | 120 |) | | 4 | 5 | .1 | | 260 | 4 | 6 | 84 | | .5 | 0 | 20 | | JUL
02 | 1 | 50 | | 0 | 44 | | 9.1 | 130 |) | | 5 | 5 | .0 | | 210 | 6 | 1 | 110 | | .6 | 0 | 21 | | AUG
07
12 | . 1 | 10 | | 0 | 34 | | 6.0 | 67 | , | | 3 | 6 | .6 | | 150 | 2 | 8 | 51 | | .4 | 0 | 16 | | 12 | | | | | | | | • | | | | | | | | | | | | - | - | | | 13 | | | | | | | - | | | | | | | | | | | | | | - | | | DA | TE | SOLI
SUM
CONS
TUEN
DI
SOL
(MG | OF
TI-
TS,
S-
VED | SOL:
RES:
AT DEG.
SUS
PEN! | DUÉ
105
. C, | SOLII
VOLA
TILE
SUS-
PENDE
(MG/ | , N | ITRO-
GEN,
TRATE
TOTAL
MG/L
S N) | GI
NITI
TO:
(MC | IRO-
EN,
RITE
IAL
G/L
N) | | CAL
G/L | GI
AMM
TO:
(Mi | TRO-
EN,
ONIA
TAL
G/L
N) | | AL
/L | MONIO
GEN,
MONIORGA
TOT
(MG | A +
NIC
AL | PHOP
PHOP
TOT
(MG | RUS, C
TAL
S/L | | ;/L | | | • • • | | 500 | | <2 | | <2 | 3.6 | | .250 | 3 | 3.8 | 1 | . 50 | 2 | .5 | 4 | .0 | 4. | . 70 | | 6.9 | | JUL
02
AUG | • • • | | 510 | | 22 | | 12 | 1.9 | | .640 | 2 | 2.5 | | .680 | `1 | .3 | 2 | .0 | 4. | 90 | | 9.4 | | 07
12 | • • • | | 300 | | 65
168 | | 14
24 | 1.7 | | .520
.500 | | .2 | | .830
.690 | 3 | .2 | 4 | .0 | 2. | 60 | 2 | 0 | | 12 | • • • • | | | | 191
155
28 | | 25
20
18 | .14
.50
.50 | | .460
.200
.300 | | .60
.70
.80 | | •450
•570
•450 | 1 | .4
.2
.5 | 1 | .8
.8 | 1. | .20
.50
.790 | 1 | 9
5
1 | | | | | | D# | A TE | TIM | E (| SENIC
DIS-
OLVED
UG/L
(S AS) | | S - | SOI
(U) | IIUM
IS-
VED
G/L
CD) | MIC
DI:
SO:
(UC | | (UG | VED | SOI
(UC | S-
Ved | | | | | | | | | | JUI
02 | <u>.</u> | 132 | 0 | 60 | | 130 | | 1 | | <10 | | 5 | | 16 | | | | | | | | | | AUG | | 134 | | 23 | | 110 | | <1 | | <10 | | 3 | | 62 | | | | | | | | | | | | ATE | LEAD,
DIS-
SOLVE
(UG/I
AS PE | NI
D SC | ANGA-
ESE,
DIS-
DLVED
IG/L
B MN) | 0
50
(U | CURY
OIS-
OLVED
G/L
HG) | NI
D
SO
(U | LE-
UM,
IS-
LVED
G/L
SE) | SO
(U | VER,
IS-
LVED
G/L
AG) | SO
(U | NC,
IS-
LVED
G/L
ZN) | | | | | | | | | | | | JUI
02
A UC | 2 | < | 1 | 28 | | <.1 | | <1 | | <1 | | 53 | | | | | | | | | | | | 07 | 7 | < | 1 | 7 | | <.1 | | <1 | | <1 | | <3 | | | | | | ### 08075400 SIMS BAYOU AT HIRAM CLARKE STREET, HOUSTON, TX--Continued ### WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 | DATE | TIME | AME-
TRYNE
TOTAL | ATRA-
ZINE,
TOTAL
(UG/L) | CYAN-
AZINE
TOTAL
(UG/L) | METHO-
MYL
TOTAL
(UG/L) | PROME-
TONE
TOTAL
(UG/L) | PROME-
TRYNE
TOTAL
(UG/L) | PRO-
PAZINE
TOTAL
(UG/L) | PROPHAM
TOTAL
(UG/L) | SEVIN,
TOTAL
(UG/L) | SIMA-
ZINE
TOTAL
(UG/L) | SIME-
TRYNE
TOTAL
(UG/L) | |-------------------|------|------------------------|-----------------------------------|-----------------------------------|----------------------------------|-----------------------------------|------------------------------------|-----------------------------------|----------------------------|---------------------------|----------------------------------|-----------------------------------| | JUL
£2
AliG | 1320 | <.10 | .10 | <.10 | <2.0 | .1 | <.1 | <.10 | <2.0 | <2.0 | .10 | <.1 | | 07 | 1340 | <.10 | .30 | <.10 | | .5 | <.1 | <.10 | | | <.10 | <.1 | ### STORM RAINFALL AND RUNDIF 08075400 SIMS BAYOU AT HIRAM CLARKE STREET, HOUSTON, TEX. | DATE | ACCUMU- | ACCUMU- | ACCUMU- | DISCHARGE | ACCUMU- | |----------|----------|----------------|----------------|----------------|----------| | | LATED | LATED | LATED | 220011111102 | LATED | | TIME | RAIN- | | WEIGHTED | | RUNOFF | | (A i il | FALL | FALL | RAINFALL | | KUNDEE | | | | | KAINFALL | | | | | AT | AT | | | | | | GAGE | GAGE | | (CUBIC | | | | 5400 | 31R | | FEET | | | | | | | PER | | | | (INCHES) | (INCHES) | (INCHES) | SECOND) | (INCHES) | | | | | | | | | | | | | | | | IAN O | : | STORM OF JAN | 1. 8 –10, 1 | 984 | | | JAN. 8 | 0.0 | 0.0 | 0.0 | 4.4.0 | 0.007# | | 0000 | 0. 0 | 0. 0 | 0. 0 | | 0. 0074 | | 1200 | 0. 0 | 0. 0 | 0. 0 | 13. 0 | 0. 0148 | | 1500 | 0. 0 | 0. 20 | 0.08 | 14. 0 | 0. 0181 | | 1800 | 0. 0 | 0. 20 | 0. 08 | 16. 0 | 0. 0236 | | 2400 | 0. 0 | 0. 20 | 0.08 | 24. 0 | 0. 0305 | | JAN. 9 | | | | | | | 0000 | 0. 0 | 0. 20 | 0.08 | 24.0 | 0. 0305 | | 0130 | 0. 12 | 0. 20 | 0. 15 | 25. 0 | 0. 0324 | | 0200 | 0.12 | 0. 25 | 0. 17 | 26. 0 | 0. 0334 | | 0230 | 0. 24 | 0. 32 | 0. 27 | 26. 0 | 0. 0344 | | 0300 | 0. 24 | 0. 34 | 0. 28 | 27. 0 | 0. 0354 | | 0330 | 0. 84 | 0. 70 | 0. 78 | 120. 0 | 0. 0400 | | 0400 | 1. 20 | 1. 11 | 1. 16 | 214. 0 | 0. 0483 | | 0430 | 1. 32 | 1.40 | 1. 35 | 464. 0 | 0.0660
 | 0500 | 1. 44 | 1.68 | 1. 54 | 714. 0 | 0. 0934 | | 0530 | 1.68 | 1. 73 | 1. 70 | 1030. 0 | 0. 1329 | | 0600 | 1.80 | 1.82 | 1.81 | 1350. 0 | 0. 1847 | | 0630 | 1. 92 | 1.89 | 1. 91 | 1430. 0 | 0. 2396 | | 0700 | 2. 04 | 1. 95 | 2. 00 | 1500.0 | 0. 2971 | | 0730 | 2. 04 | 1. 75
1. 96 | 2.01 | 1460. 0 | 0. 3531 | | 0800 | 2. 04 | | | 1410. 0 | 0. 4072 | | | | 1. 96 | 2. 01 | | 0. 4574 | | 0830 | 2. 04 | 1. 97 | 2. 01
2. 01 | 1310.0 | | | 0900 | 2. 04 | 1. 97 | | 1200. 0 | 0. 5265 | | 1000 | 2. 04 | 1. 97 | 2. 01 | 979. 0 | 0. 6016 | | 1100 | 2. 04 | 1. 97 | 2. 01 | 809. 0 | 0. 6636 | | 1200 | 2. 04 | 1. 97 | 2. 01 | 623. 0 | 0. 6995 | | 1230 | 2. 04 | 1. 97 | 2. 01 | 530. 0 | 0. 7198 | | 1300 | 2. 04 | 1. 97 | 2. 01 | 591.0 | 0. 7538 | | 1400 | 2. 04 | 2. 04 | 2. 04 | 714. 0 | 0. 8086 | | 1500 | 2. 28 | 2. 16 | 2. 23 | 788. O | 0. 8993 | | 1700 | 2. 28 | 2. 16 | 2. 23 | 877. O | 1.0002 | | 1800 | 2. 28 | 2. 16 | 2. 23 | 871.0 | 1. 1672 | | 2200 | 2. 28 | 2. 16 | 2. 23 | 625. 0 | 1. 3110 | | 2400 | 2. 28 | 2. 16 | 2. 23 | 447 . 0 | 1. 4139 | | JAN. 10 | | | | | | | 0000 | 2. 28 | 2. 16 | 2. 23 | 447. 0 | 1. 4139 | | 0400 | 2. 28 | 2. 16 | 2. 23 | 238. 0 | 1. 4869 | | 0800 | 2. 28 | 2. 16 | 2. 23 | 142. 0 | 1. 5305 | | 1200 | 2. 28 | 2. 16 | 2. 23 | 92. 0 | 1. 5658 | | 1800 | 2. 28 | 2. 16 | 2. 23 | 53. O | 1. 5902 | | 2400 | 2. 28 | 2. 16 | 2. 23 | 31.0 | 1. 5973 | | E-700 | E. EV | E. IV | E. E. | | | # STORM RAINFALL AND RUNOFF 08075400 SIMS BAYOU AT HIRAM CLARKE STREET, HOUSTON, TEX. --CONTINUED | DATE
AND
TIME | ACCUMU-
LATED
RAIN-
FALL
AT | ACCUMU-
LATED
RAIN-
FALL
AT | ACCUMU-
LATED
WEIGHTED
RAINFALL | DISCHARGE | ACCUMU-
LATED
RUNOFF | |---------------------|---|---|--|-----------------------|--| | | GAGE
5400 | GAGE
31R | | (CUBIC
FEET
PER | . Marie . | | | (INCHES) | (INCHES) | (INCHES) | | (INCHES) | | 440 40 | | STORM OF AUG |). 12-13, 19 | 784 | , en | | AUG. 12 | 0.0 | 0.0 | 0.0 | 40.0 | 0.0000 | | 0000 | 0.0 | 0. 0 | 0. 0 | 40. 0 | 0. 0092 | | 0600 | 0. 0 | 0. 0 | 0. 0 | 19. 0 | 0. 0180
0. 0228 | | 1200
1330 | 0. 0
0. 0 | 0. 0
0. 0 | 0. 0
0. 0 | 17. 0
19. 0 | 0. 0228
0. 0243 | | | 0. 0
0. 0 | 0. U
0. 18 | 0. 0
0. 07 | 20. 0 | 0. 0251 | | 1400
1430 | 0. U
0. 24 | 0. 18
1. 77 | 0. 07
0. 85 | 20. 0
59. 0 | 0. 0231 | | 1500 | 0. 24
1. 32 | 1. //
3. 22 | 0. 85
2. 08 | 97. 0 | 0. 02/3 | | 1530 | 1. 32 | 3. 78 | 2. 59 | 262. 0 | 0. 0411 | | 1600 | 1.80 | 4. 07 | 2. 71 | 426. O | 0. 0574 | | 1630 | 1.80 | 4. 16 | 2. 74 | 599. O | 0. 0804 | | 1700 | 1.80 | 4. 18 | 2. 75 | 772. 0 | 0. 1100 | | 1730 | 1. 92 | 4. 18 | 2. 8 2 | 891. O | 0. 1442 | | 1800 | 1. 72 | 4. 18 | 2. 82 | 1010. 0 | 0. 1442 | | 1830 | 1. 72 | 4. 20 | 2. 83 | 969. O | 0. 2201 | | 1900 | 1. 72 | 4. 20 | 2. 83 | 928. O | 0. 2557 | | 1930 | 1. 72 | 4. 20 | 2. 83 | 844. O | 0. 2881 | | 2000 | 1. 72 | 4. 20 | 2. 83 | 760. O | 0. 3172 | | 2030 | 1. 72 | 4. 20 | 2. 83 | 677. O | 0. 3432 | | 2100 | 1. 72 | 4. 20 | 2. 83 | 5 73 . 0 | 0. 3452 | | 2130 | 1. 72 | 4. 20 | 2. 83 | 527. O | 0. 3861 | | 2200 | 1. 72 | 4. 20 | 2.83 | 460. O | 0. 4126 | | 2300 | 1. 72 | 4. 20 | 2. 83 | 362. 0 | 0. 4404 | | 2400 | 1. 72 | 4. 20 | 2. 83 | 290. 0 | 0. 4738 | | AUG. 13 | /E | 7. EV | E. UU | E. 7 U. U | U. 47 UU | | 0000 | 1. 92 | 4. 20 | 2. 83 | 290. Q | 0. 4738 | | 0200 | 1. 92 | 4. 20 | 2. 83 | 211.0 | 0. 5061 | | 0400 | 1. 92 | 4. 20 | 2. 83 | 166. 0 | 0. 5316 | | 0600 | 1. 92 | 4. 20 | 2. 83 | 139. 0 | 0. 5529 | | 0800 | 1. 92 | 4. 20 | 2. 83 | 115. 0 | 0. 5706 | | 1000 | 1. 92 | 4. 20 | 2. 83 | 94. 0 | 0. 5850 | | 1200 | 1. 92 | 4. 20 | 2. 83 | 83. 0 | 0. 6041 | | 1600 | 1. 92 | 4. 20 | 2. 83 | 65. O | 0. 6190 | | 1800 | 1. 92 | 4. 20 | 2. 83 | 57. O | 0. 6322 | | 2200 | 1. 92 | 4. 20 | 2. 83 | 45. O | 0. 6425 | | 2400 | 1. 92 | 4. 20 | 2. 83 | 39. 0 | 0. 6455 | 08075470 SIMS BAYOU AT MARTIN LUTHER KING BLVD., HOUSTON, TEX. (Flood-hydrograph partial-record station) LOCATION.--Lat 29°38'42", long 95°20'13", Harris County, Hydrologic Unit 12040104, at downstream side of upstream bridge on Martin Luther King Boulevard (formerly South Park Boulevard), 1.6 miles upstream from Atchison, Topeka, and Santa Fe Railway Co. bridge in south Houston. DRAINAGE.--48.4 m 2. PERIOD OF RECORD. -- October 1977 to current year. - GAGE.--Digital flood-hydrograph and rainfall recorders and crest-stage gage. Datum of gage is National Geodetic Vertical Datum of 1929, 1973 adjustment, unadjusted for land-surface subsidence. - REMARKS.--Gage-height records good. Peak discharges were not computed at this time because an adequate stage-discharge relationship has not been determined. - EXTREMES FOR PERIOD OF RECORD.--Maximum discharge (est.) 1,500 ft³/s Jan. 19, 1978 (elevation unknown); maximum elevation, 37.82 ft Aug. 18, 1983. Minimum not determined. - EXTREMES OUTSIDE PERIOD OF RECORD.--Peak stage of 38.28 ft (discharge unknown) on June 15, 1976. This same storm produced the largest peak for the period of record (1952-81) at the gaging station Sims Bayou at Houston (08075500). EXTREMES FOR CURRENT YEAR.--Peak stages above elevation of 25.0 ft and maximum (*): | DATE | TIME | DISCHARGE
(ft ³ /s) | ELEVATION (ft) | |--------|------|-----------------------------------|----------------| | Jan. 9 | 0945 | unknown | *25.90 | Minimum discharge not determined. ## STORM RAINFALL AND RUNOFF 09075470 SIMS BAYOU AT M. L. KING BLVD., HOUSTON, TEX. | DATE
AND
TIMF | LATED
RAIN-
FALL
AT
GAGE | LATED
RAIN-
FALL
AT
GAGE | LATED
RAIN
Fall
at | FALL
AT
GAGE | ACCUMU-
LATED
WEIGHTED
RAINFALL | (F) AGE | |---------------------|--------------------------------------|--------------------------------------|-----------------------------|--------------------|--|--| | | | | | | (INCHES) | | | | | | JAN. 9 -11 | | | ه و المحمد و المحمد | | JAN. 9 | | | | | | | | 0000 | 0. 0 | 0. 0 | | 0. 0 | 0. 0 | 12. 25 | | 0100 | | 0. 0 | 0. 05 | 0. 0 | 0. 00 | 12. 25 | | 0115 | 0. 0 | 0. 0 | 0. 05 | 0. 0 | 0. 00 | 12, 25 | | 0130 | 0. 0 | 0.12 | 0. 05 | 0. 0 | 0. 07 | 12, 25 | | 0145 | | 0.12 | 0. 05 | 0. 0
0. 05 | 0. 07 | 12, 25 | | 0200 | 0. 0
0. 12 | 0. 12 | Ö. 08 | 0. 05
0. 11 | 0.08
0.18 | 12, 25
12, 26 | | 0215
0230 | | 0. 24
0. 24 | 0.08
0.08 | 0. 11
0. 12 | 0. 18
0. 18 | 12. 28 | | 0230 | 0. 12 | 0. 24
0. 24 | 0.08 | 0. 12
0. 13 | 0. 18 | 12. 28
12. 29 | | 0300 | 0. 12 | 0. 24 | 0.00 | 0. 13 | 0. 17 | 12. 30 | | 0315 | 0. 12 | 0. 72 | 0. 08
0. 19
0. 18 | 0. 39 | 0. 49 | 12. 50 | | 0330 | | | 0.10 | 0. 50 | 0.44 | 13. 25 | | 0345 | Q. 48 | 0. 84
1. 08 | 0. 18 | 0. 73 | 0. 83 | 13. 00 | | 0400 | 0. 60 | 1.20 | 1.02 | 0. 71 | 1.00 | 13. 50 | | 0415 | 0. 72 | 1.20 | 1.02 | 1.07 | 1. 05 | 13. 90 | | 0430 | 0. 84 | 1.32 | 1. 02 | 1. 20 | 1. 17 | 14.40 | | 0445 | 0. 84 | 1.32 | 1.02 | 1. 29 | 1. 18 | 15, 03 | | 0500 | 0.96 | 1.44 | 1.24 | 1. 48 | 1. 32 | 15. 60 | | 0515 | 0. 96 | 1. 68 | 1. 24 | 1. 51 | 1. 45 | 16, 17 | | 0530 | 1.32 | 1. 68 | 1.24 | 1. 53 | 1. 55 | 16. 91 | | 0545 | 1. 32 | 1.80 | 1.24 | 1. 57 | 1. 62 | 17. 77 | | 0600 | 1.32 | 1.80 | 1.79 | 1.62 | 1. 65 | 18, 59 | | 0615 | 1.44 | 1. 92 | 1.79 | 1. 65 | 1.75 | 19.42 | | 0630 | 1.44 | 1. 92 | 1. 79 | 1. 69 | 1. 76 | 20, 25 | | 0645 | 1. 56 | 1. 92 | 1.79 | 1.74 | 1.80 | 21, 13 | | 0700 | 1. 56 | 2. 04 | 1. 92
1. 92 | 1.75 | 1.87 | 22. 0 3 | | 0715 | 1. 56 | 2. 04 | 1. 92 | 1.76 | 1.87 | 22, 85 | | 0730 | 1.56 | 2.04 | 1. 72 | 1. 76 | 1.87 | 23, 56 | | 0745 | 1.56 | 2. 04
2. 04 | 1. 92 | 1.76 | 1.87
1.87 | ?'A. 14 | | 0800 | | | 1. 93 | 1. 76
1. 76 | | 24, 64 | | 0815 | 1. 56 | | 1. 73 | 1. // | 1. 87 | 24. 79 | | 0845 | 1. 56 | 2. 04 | 1. 93 | 1. 77 | 1.87 | 25, 51 | | 0945 | 1. 56 | 2.04 | 1. 93 | 1. 77 | 1.87 | 75. 70 | | 1000 | 1. 56 | 2. 04 | 1. 93 | 1. 77 | 1.87 | 25, 90 | | 1015 | 1. 56 | 2. 04 | 1. 93 | 1. 77 | 1.87 | คร. 90 | | 1145 | 1.56 | 2.04 | 1. 93 | 1. 77 | 1. 87 | 25, 32 | | 1200 | 1. 56 | 2. 04 | 1. 93 | 1. 77 | 1.87 | 25, 17 | | 1315 | 1. 56 | 2. 04 | 1. 93 | 1. 77 | 1. 87 | 24, 15 | | 1330 | 1. 68 | 2. 04 | 1. 73 | 1. 78 | 1. 91 | 24. OO | STAGE RECORDS ARE RELATIVE TO GAGE DATUM. DISCHARGE RECORDS ARE NOT CURRENTLY AVAILABLE FOR THIS STORM. # STORM RAINFALL AND RUNOFF 08075470 SIMS BAYOU AT M. L. KING BLVD., HOUSTON, TEX. | DATE
AND
Time | | LATED | LATED | LATED | ACCUMU-
LATED
WEIGHTED
RAINFALL | STAGE | |---------------------|----------------|-------------------------|----------------|--|--|---| | | (INCHES) | (INCHES) | (INCHES) | (INCHES) | (INCHES) | (FEFT) | | | STOR | M OF JAN. | 9 -11,1984 | ، سے سے سے سے سے دروں ہے جہ سے دروں ہے ج | -CONTINUED | د که ۱۰۰۱ این افت افت بین این این این این این این این این این ا | | JAN. 9 | | | | | | | | | 1. 68 | 2. 04 | 1. 73 | 1.82 | 1. 91 | 23. 73 | | 1400 | 1. 68 | 2. 04
2. 04 | 1. 97 | 1. 84 | 1. 92 | 23. 54 | | 1415 | | 2. 04 | 1. 97 | 1.88 | 1. 92 | 23. 44 | | 1430 | 1.68 | 2. 16 | 1. 97 | 1. 94 | 2. 00 | 23. 24 | | 1445 | 1.80 | 2. 16
2. 28 | 1. 97 | 1. 96 | 2. 03 | 23. 14 | | 1500 | 1. 92 | 2. 28 | 2. 09 | 1. 96 | 2. 13 | 23, 11 | | 1545 | 1. 92 | 2. 28
2. 28
2. 28 | 2. 09 | 1. 96 | 2. 13 | 23. 10 | | 1600 | 1. 92 | 2. 28 | 2, 13 | 1. 96 | 2. 13 | 23, 10 | | 1745 | 1. 92 | 2. 28 | 2. 13 | | 2. 13 | 22, 62 | | 1800 | 1. 92 | 2. 28
2. 28 | 2. 13 | 1. 96 | 2. 13 | 22. 54 |
| 1845 | 1. 92 | 2. 28 | 2.13 | 1. 96 | 2. 13 | 22. 31 | | 1900 | 2. 04 | 2. 28 | | 1. 96 | 2. 16 | | | 2000 | 2. 04 | 2. 28
2. 28 | 2. 13 | 1. 96 | 2. 16 | 21.82 | | 2100 | 2.04 | 2. 28 | | 1. 70 | 2. 16 | 21.42 | | 2145 | 2.04 | | | 1.96 | 2. 16 | | | 2245 | 2.04 | 2. 28
2. 28 | 2. 13
2. 13 | 1. 96
1. 96 | 2. 16 | 20. 52 | | 2330 | 2. 04
2. 04 | 2. 28 | | | 2. 16
2. 16 | 20. 0 8 | | 2400 | 2. 04 | 2. 28 | 2. 13 | 1. 76 | 2. 16 | 19. 83 | | JAN. 10 | 2.04 | 0.00 | 0.40 | | 2 1/ | 10.00 | | 0000 | | 2. 28 | 2. 13 | 1. 96 | 2. 16 | | | 0100 | 2. 04 | 2. 28 | 2. 13 | 1. 96 | 2. 16 | 19. 33 | | 0200 | 2. 04 | 2. 28 | 2. 13 | 1. 96 | 2. 16 | 18. 93 | | 0300 | 2. 04 | 2. 28 | 2. 13 | 1. 96 | 2. 16 | | | 0400 | 2. 04 | 2. 28 | 2. 13 | 1. 96 | 2. 16 | 18. 09 | | 0500 | 2. 04 | 2. 28 | 2. 13
2. 13 | 1. 96 | 2. 16 | 17. 71 | | 0600 | 2. 04 | | 2.13 | 1. 96 | 2. 16 | 17. 37 | | 0800 | 2. 04
2. 04 | 2. 2 8
2. 28 | 2. 13 | 1. 96
1. 96
1. 96 | 2. 16 | 16. 82 | | 0900 | 2. 04
2. 04 | | 2. 13 | 1.70 | 2. 16 | 16.45 | | 1000 | | | 2. 13 | · - | 2. 16
2. 16 | 16. 16 | | 1200
1400 | 2. 04
2. 04 | 2. 28
2. 28 | 2. 13
2. 13 | 1. 96
1. 96 | 2. 16
2. 16 | 15. 71
15. 35 | | | _ | | | | 2.10
2.14 | | | 1600
1800 | 2. 04
2. 04 | 2. 28
2. 28 | 2. 13
2. 13 | 1. 96
1. 96 | 2. 16
2. 16 | 14. 96
14. 70 | | 2000 | 2. 04
2. 04 | 2. 28 | 2. 13
2. 13 | 1. 76 | 2. 16
2. 16 | 14. 43 | | 2400 | 2. 04
2. 04 | 2. 28 | 2. 13
2. 13 | 1. 76
1. 96 | 2. 16
2. 16 | 14. 00 | | | z. U4 | £. £0 | £. 1,5 | 1. 70 | æ. 10 | 14.00 | | JAN. 11
0000 | 2. 04 | 2. 28 | 2 12 | 1 04 | 2. 16 | 14. 00 | | 0600 | 2. 04
2. 04 | 2. 28
2. 28 | 2. 13
2. 13 | 1. 96
1. 96 | 2. 16
2. 16 | 13.50 | | 1200 | 2. 04
2. 04 | 2. 28
2. 28 | 2. 13
2. 13 | 1. 76
1. 96 | 2. 16
2. 16 | 13. 25 | | 1800 | 2. 04
2. 04 | 2. 28
2. 28 | 2. 13
2. 13 | 1. 76
1. 76 | 2. 16
2. 16 | 13. 25 | | 2400 | 2. 04
2. 04 | 2. 28
2. 28 | 2. 13 | 1. 76 | 2. 16
2. 16 | 13. 10 | STAGE RECORDS ARE RELATIVE TO GAGE DATUM. DISCHARGE RECORDS ARE NOT CURRENTLY AVAILABLE FOR THIS STORM. ### 08075500 SIMS BAYOU AT HOUSTON, TX LOCATION.--Lat 29°40'27", long 95°17'21", Harris County, Hydrologic Unit 12040104, on left bank at downstream side of bridge on State Highway 35 in southeast Houston and 7.0 mi upstream from mouth. DRAINAGE AREA. -- 63.0 mi². Prior to Oct. 1, 1976, 64.0 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD .-- October 1952 to current year. REVISED RECORDS. -- WSP 1922: 1960. WDR TX-76-2: 1975(M). GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 3.09 ft below National Geodetic Vertical Datum of 1929, 1973 adjustment; unadjusted for land-surface subsidence. Telemetry located at station. REMARKS.--Water-discharge records fair. Low flow is largely sustained by sewage effluent from Houston suburbs and industrial wastes. AVERAGE DISCHARGE. -- 32 years, 84.0 ft 3/s (60,860 acre-ft/yr). EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 11,400 ft³/s Aug. 18, 1983, Hurricane Alica (gage height, 33.23 ft); minimum daily, 0.9 ft³/s Aug. 7, 1955. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,540 ft³/s Jan. 9 at 1230 hours (gage height, 21.34 ft), no other peak above base of 2,200 ft³/s; minimum daily, 15 ft³/s Oct. 3. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 | | | | • | | | MEÁN VALU | ES | | | | | | |-------------|------------|-----------|------------|------------|-----------|-----------|-----------|-----------|-----------|------------|------------|-----------| | DAY | oct | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | . 23 | 210 | 282 | 54 | 50 | 44 | 47 | 47 | 38 | 69 | 42 | 97 | | 2 | 23 | 76 | 78 | 51
53 | 70 | 46 | 80 | 43 | 41 | 49
45 | 45
54 | 424 | | 2
3
4 | 15
24 | 39
37 | 423
194 | 53
46 | 165
76 | 39
52 | 69
46 | 41
46 | 38
39 | 38 | 55
55 | 254
89 | | 5 | 22 | 53 | 76 | 46 | 58 | 79 | 49 | 44 | 47 | 42 | 114 | 68 | | 6 | 28 | 405 | 51 | 45 | 52 | 54 | 48 | 50 | 262 | 49 | 209 | . 58 | | 7 | 25 | 121 | 39 | 43 | 48 | 46 | 46 | 31 | 221 | 39 | 185 | 112 | | 8 | 31
31 | 50
79 | 43
38 | 47
1420 | 48
293 | 48
46 | 57
53 | 50
48 | 55
44 | 35
40 | 74
54 | 121
58 | | 9
10 | 29 | 107 | 56 | 659 | 195 | 49 | 48 | 55 | 39 | 43 | 89 | 54 | | 11 | 28 | 45 | 237 | 177 | 93 | 48 | 49 | 64 | 45 | 41 | 59 | 58 | | 12 | 28 | 42 | 69 | 1 01 | 319 | 95 | 49 | 63 | 49 | 43 | 482 | 56 | | 13 | 25 | 40 | 46 | 65 | 180 | 175 | 48 | 61 | 43 | 33 | 706 | 59 | | 14
15 | 22
22 | 42
41 | 37
34 | 67
72 | 94
86 | 66
54 | 48
44 | 59
58 | 46
45 | 44
53 | 209
752 | 54
67 | | | _ | | | | | | | | | | | | | 16 | 28 | 45 | 276 | 61 | 71 | 51 | 45 | 58 | 39 | 51 | 251 | 187 | | 17 | 130 | 48 | 196 | 43 | 56 | 49 | 44 | 65 | 35 | 51 | 87 | 58 | | 18
19 | 42
32 | 47
82 | 66
45 | 54
54 | 59
52 | 49
148 | 44
45 | 86
353 | 136
60 | 144
149 | 62
58 | 52
51 | | 20 | 36 | 51 | 41 | 51 | 72 | 76 | 43 | 343 | 43 | 61 | 52 | 51
51 | | | | | | | | | | | | | | | | 21 | 46 | 47 | 305 | 50 | 74 | 47 | 43 | 77 | 36 | 48 | 57 | 290 | | 22 | 46 | 51 | 125 | 50 | 41 | 44 | 50 | 53 | 32 | 44 | 56 | 245 | | 23
24 | 47
44 | 97
51 | 67
54 | 646
462 | 57
56 | 63
102 | 43
47 | 45
40 | 34
30 | 45
65 | 56
98 | 77
68 | | 25 | 40 | 43 | 50 | 192 | 46 | 55 | 46 | 36 | 33 | 144 | 406 | 63 | | | | | | | | | | | | | | | | 26 | 40 | 43 | 52 | 107 | 104 | 54 | 41 | 25 | 35 | 70 | 1 02 | 61 | | 27
28 | 39
39 | 110
58 | 49
58 | 78
62 | 113
55 | 49
49 | 45
43 | 32
66 | 34 | 66
95 | 65 | 45 | | 28
29 | 39
38 | 36
45 | 52 | 61 | 33
47 | 49
46 | 43 | 77 | 38
40 | 114 | 60
56 | 52
52 | | 30 | 42 | 640 | 52 | 70 | | 43 | 49 | 39 | 42 | 48 | 54 | 49 | | 31 | 158 | | 57 | 63 | | 43 | | 42 | | 44 | 53 | | | TOTAL | 1223 | 2845 | 3248 | 5050 | 2730 | 1909 | 1453 | 2197 | 1719 | 1902 | 4702 | 3030 | | MEAN | 39.5 | 94.8 | 105 | 163 | 94.1 | 61.6 | 48.4 | 70.9 | 57.3 | 61.4 | 152 | 1 01 | | MAX | 158 | 640 | 423 | 1420 | 319 | 175 | 80 | 353 | 262 | 149 | 752 | 424 | | MIN | 15 | 37 | 34 | 43 | 41 | 39 | 41 | 25 | 30 | 33 | 42 | 45 | | AC-FT | 2430 | 5640 | 6440 | 10020 | 5410 | 3790 | 2880 | 4360 | 341 0 | 3770 | 9330 | 6010 | | CAL YR | 1983 TOTAL | 58732 | MEAN | 161 MA | X 6630 | MIN 15 | AC-FT | 116500 | | | | | | WTR YR | 1984 TOTAL | 32008 | MEAN | 87.5 MA | | MIN 15 | AC-FT | 63490 | | | | | | | | | | | | | | | | | | | ### 08075500 SIMS BAYOU AT HOUSTON, TX--Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD. -- Chemical, biochemical, and pesticide analyses: October 1968 to current year. WATER QUALITY DATA, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(UMHOS) | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
(DEG C) | COLOR
(PLAT-
INUM-
COBALT
UNITS) | TUR-
BID-
ITY
(NTU) | OXYGEN,
DIS-
SOLVED
(MG/L) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION) | OXYGEN DEMAND, BIO- CHEM- ICAL, DAY (MG/L) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
1D0 ML) | STREP-
TOCOCCI
FECAL,
KF AGAR
(COLS.
PER
100 ML) | |------------|--|--|---|--|--|--|---|---|--|---|--|--| | FEB
06 | 1315 | 46 | 1120 | 7.8 | 12.5 | 5 | 12 | 11.4 | . 106 | 4.9 | 2900 | 880 | | JUL
02 | 1130 | 41 | 814 | 7.6 | 27.0 | 45 | 25 | 4.1 | 51 | 6.3 | 10000 | 150 | | AUG
07 | 1440 | 119 | 6 6 2 | 7.5 | 30.0 | 50 | 38 | 4.8 | 63 | 6.6 | 55000 | 1000 | | | | | | | | | | | | | | | | DATE | HARD-
NESS
(MG/L
AS
CACO3) | HARD-
NESS,
NONCAR-
BONATE
(MG/L
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
FIELD
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | | FEB
06 | 190 | 0 | 53 | 14 | 170 | 6 | 6.3 | 2 20 | 160 | 120 | .60 | 17 | | JUL
02 | 140 | 0 | 44 | 8.5 | 110 | 4 | 8.9 | 1 70 | 49 | 100 | .90 | 17 | | AUG
07 | 120 | 0 | 37 | 6.6 | 8B | 4 | 5.8 | 140 | 39 | 85 | .70 | 14 | | DAT | TUE!
Di
SOI | OF RESI | DUE SOLI 05 VOI C, TIL - SUS ED PEND | A- GE
E, NITR
- TOT | N, GE
ATE NITR
AL TOT.
/L (MG | N, GEI
ITE NO2+1
AL TOTA
/L (MG) | N, GE
NO3 AMMO
AL TOT
/L (MO | EN, GE
ONIA ORGA
CAL TOT
G/L (MG | NIC ORGA
AL TOT
/L (MG | AM-
A + PHOS
NIC PHOR
AL TOTA
/L (MG | US, ORGA
AL TOT
/L (MG | NIC
AL
/L | | FEB
06. | | 670 | <2 | <2 4 | .3 .: | 370 4. | .7 . | 660 2 | .0 2 | .7 2.0 | 20 | 7.2 | | JUL
02. | | 440 | 43 | | | | | | | .0 2.0 | | 7.0 | | AUG
07. | | 360 | 36 | | | | | | | .0 1.9 | | 1 | | | | | ATE | D
SO
IME (U | | S- D:
VED SOI
G/L (UC
 MIUM MI
IS- DI
LVED SC
G/L (U | S- DI
DLVED SO
IG/L (U | S- D
LVED SO
G/L (U | ON,
IS-
LVED
G/L
FE) | | | | | | | 2 1 | 130 | 17 | 95 | <1 | <10 | 4 | 5 | | | | | | AU-
O | | 440 | 17 | 96 | <1 | 40 | 5 | 35 | | | | | | | DATE | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | (UG/L | MERCURY
DIS-
SOLVED
(UG/L
AS HG) | SELE-
NIUM,
DIS-
SOLVEI
(UG/L
AS SE) | (UG/L | (UG/L | | | | | | | | JUL
02 | <1 | 110 | <.1 | <1 | <1 | 25 | | | | | | | | AUG
07 | 3 | 2 x | u61 | <1 | <1 | 12 | | | | | DATE | TIME | AME-
TRYNE
TOTAL | ATRA-
ZINE,
TOTAL
(UG/L) | CYAN-
AZINE
TOTAL
(UG/L) | METHO-
MYL
TOTAL
(UG/L) | PROME-
TONE
TOTAL
(UG/L) | PROME-
TRYNE
TOTAL
(UG/L) | PRO-
PAZINE
TOTAL
(UG/L) | PROPHAM
TOTAL
(UG/L) | SEVIN,
TOTAL
(UG/L) | SIMA-
ZINE
TOTAL
(UG/L) | SIME-
TRYNE
TOTAL
(UG/L) | | JUL
02 | 1130 | <.10 | .40 | <.10 | <2.0 | .5 | <.1 | <.10 | <2.0 | <2.0 | <.10 | <.1 | | AUG
07 | 1440 | <.10 | .20 | <.10 | <2.0 | .4 | <.1 | <.10 | <2.0 | <2.0 | <.10 | <.1 | # STORM RAINFALL AND RUNOFF 08075500 SIMS BAYOU AT HOUSTON, TEX. | AND TIME RAIN- RAIN-RAIN- RAIN- RAIN | DATE
AND
TIME | ACCUMU-
LATED
RAIN-
FALL
AT | ACCUMU
LATED
RAIN
FALL
AT | ACCUMU
LATED
RAIN-
FALL
AT | ACCUMU-
LATED
RAIN-
FALL
AT | ACCUMU-
LATED
RAIN-
FALL
AT | ACCUMU-
LATED
WEIGHTED
RAINFALL | D15CHARGE | ACCUMU-
LATED
RUNOFF | |--|---------------------|---|---------------------------------------|--|---|---|--|-----------|----------------------------| | CINCHES CINC | | GAGE
5500 | GAGE
5470 | GAGE
5400 | GAGE | GAGE | | (CURIC | | | JAN. 8 0000 | | | | | | | | 111 | | | JAN. 8 0000 | | (INCHES) | (INCHES) | (INCHES) | | | | SECOND) | (INCHES) | | 0000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | | | | STORM OF JA | N 9 -12 10 | 01 | | | | | 1200 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | JAN. B | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 50.0 | 0.0074 | | 1330 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 47.0 0.0168 1400 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 47.0 0.0168 1400 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 44.0 0.0179 1500 0.0 0.0 0.0 0.0 0.0 0.0 0.20 0.03 44.0 0.0179 1500 0.0 0.0 0.0 0.0 0.0 0.0 0.20 0.03 44.0 0.0185 1530 0.0 0.0 0.0 0.0 0.0 0.0 0.20 0.03 44.0 0.0199 1600 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.20 0.03 45.0 0.0198 1700 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 1200 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 50. O | 0.0074 | | 1400 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 1330 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 47 O | 0.0168 | | 1430 0.0 0.0 0.0 0.0 0.0 0.0 0.20 0.03 44.0 0.0179 1500 0.0 0.0 0.0 0.0 0.0 0.20 0.03 43.0 0.0185 1530 0.0 0.0 0.0 0.0 0.0 0.20 0.03 43.0 0.0185 1530 0.0 0.0 0.0 0.0 0.0 0.20 0.03 45.0 0.0190 1600 0.0 0.0 0.0 0.0 0.0 0.0 0.20 0.03 45.0 0.0190 1700 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.20 0.03 45.0 0.0210 1800 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 1400 | 0.0 | 0.0 | 0.0 | 0.0 | 0.09 | 0.01 | 45.0 | 0.0174 | | 1500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.20 0.03 43.0 0.0185 1530 0.0 0.0 0.0 0.0 0.0 0.20 0.03 44.0 0.0190 1600 0.0 0.0 0.0 0.0 0.0 1 0.20 0.03 45.0 0.0198 1700 0.0 0.0 0.0 0.0 0.01 0.20 0.03 45.0 0.0198 1700 0.0 0.0 0.0 0.0 0.01 0.20 0.03 45.0 0.0218 1830 0.0 0.0 0.0 0.0 0.0 1 0.20 0.03 44.0 0.0218 1830 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.20 0.03 42.0 0.0228 1930 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 | 1430 | 0. 0 | 0. 0 | 0.0 | 0.0 | 0.20 | 0. 03 | 44.0 | 0.0179 | | 1530 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1500 | 0. 0 | 0. 0 | 0. 0 | 0. 0 | 0. 20 | 0. 03 | 43. 0 | 0.0185 | | 1600 0.0 0.0 0.0 0.0 0.0 0.01 0.20 0.03 45.0 0.0198 1700 0.0 0.0 0.0 0.0 0.01 0.20 0.03 46.0 0.0210 1800 0.0 0.0 0.0 0.0 0.01 0.20 0.03 43.0 0.0218 1830 0.0 0.0 0.0 0.0 0.01 0.20 0.03 42.0 0.0223 1700 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 42.0 0.0223 1700 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 1530 | 0.0 | 0. 0 | 0. 0 | 0. 0 | 0. 20 | 0. 03 | 44. 0 | 0.0190 | | 1700 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1600 | 0. 0 | 0. 0 | 0.0 | 0. 01 | 0. 20 | 0. 03 | 45. 0 | 0.0198 | | 1800 0.0 0.0 0.0 0.0 0.01 0.20 0.03 43.0 0.0218 1830 0.0 0.0 0.0 0.0 0.01 0.20 0.03 42.0 0.0223 1930 0.0 0.0 0.0 0.0 0.03 0.20 0.03 41.0 0.0228 1930 0.0 0.0 0.0 0.0 0.03 0.20 0.03 41.0 0.0228 2030 0.0 0.0 0.0 0.0 0.0 0.08 0.20 0.03 41.0 0.0238 2030 0.0 0.12 0.0 0.0 0.0 0.0 0.0 0.8 43.0 0.0238 2130 0.0 0.12 0.0 0.14 0.20 0.08 43.0 0.0243 2130 0.0 0.12 0.0 0.14 0.20 0.08 46.0 0.0249 2130 0.0 0.12 0.0 0.14 0.20 0.08 46.0 0.0245 2200 0.0 0.12 0.0 0.17 0.20 0.08 50.0 0.0255 2200 0.0 0.12 0.24 0.0 0.17 0.20 0.08 50.0 0.0261 2230 0.12 0.24 0.0 0.17 0.20 0.13 53.0 0.0267 2300 0.12 0.24 0.0 0.19 0.20 0.13 53.0 0.0267 2400 0.12 0.24 0.0 0.19 0.20 0.13 77.0 0.0292 JAN.9 0000 0.12 0.24 0.0 0.19 0.20 0.13 77.0 0.0292 0030 0.12 0.24 0.0 0.19 0.20 0.13 77.0 0.0292 0030 0.12 0.24 0.0 0.19 0.20 0.13 66.0 0.0302 0100 0.24 0.24 0.0 0.19 0.20 0.13 86.0 0.0302 0100 0.24 0.24 0.0 0.24 0.20 0.19 0.20 0.13 66.0 0.0302 0100 0.24 0.24 0.12 0.24 0.20 0.19 98.0 0.0326 0200 0.24 0.24 0.12 0.24 0.25 0.29 0.29 0.13 66.0 0.0302 0200 0.24 0.24 0.12 0.24 0.20 0.19 98.0 0.0326 0200 0.24 0.24 0.12 0.24 0.27 0.25 0.19 101.0 0.0338 0230 0.24 0.36 0.24 0.27 0.25 0.19 101.0 0.0338 0230 0.36 0.60 0.84 0.37 0.37 0.34 0.31 102.0 0.0363 0330 0.36 0.60 0.84 0.37 0.37 0.34 0.31 102.0 0.0363 0330 0.36 0.60 0.84 0.37 0.37 0.34 0.31 102.0 0.0363 0330 0.36 0.60 0.84 0.37 0.37 0.34 0.31 102.0 0.0363 0330 0.36 0.60 0.84 0.37 0.70 0.69 102.0 0.0363 0330 0.36 0.60 0.84 0.37 0.70 0.69 102.0 0.0368 0400 0.72 0.84 1.20 1.21 1.11 1.04 1.09.0 0.0388 0430 0.96 1.08 1.32 1.56 1.80 1.98 1.82 1.70 1.99.0 0.0567 0700 1.56 1.80 2.04 2.11 1.96 1.92 791.0 0.0684 0500 1.56 1.80 2.04 2.11 1.96 1.99 791.0 0.0686 | 1700 | 0.0 | 0. 0 | 0.0 | 0. 01 | 0. 20 | 0. 03 | 46. O | 0.0210 | | 1830 | 1800 | 0.0 | 0. 0 | 0.0 | 0. 01 | 0. 20 | 0. 03 | 43. 0 | 0. 0218 | | 1900 0.0 0.0 0.0 0.0 0.03 0.20 0.03 11.0 0.0228 1930 0.0 0.0 0.0 0.0 0.03 0.20 0.03 11.0 0.0233 2000 0.0 0.0 0.0 0.0 0.08 0.20 0.03 14.0 0.0233 2000 0.0 0.12 0.0 0.08 0.20 0.08 14.0 0.0233 2100 0.0 0.12 0.0 0.14 0.20 0.08 14.0 0.0249 2130 0.0 0.12 0.0 0.14 0.20 0.08 146.0 0.0249 2130 0.0 0.12 0.0 0.14 0.20 0.08 146.0 0.0249 2130 0.0 0.12 0.0 0.17 0.20 0.08 50.0 0.0267 2300 0.12 0.24 0.0 0.17 0.20 0.08 50.0 0.0267 2300 0.12 0.24 0.0 0.19 0.20 0.13 55.0 0.0267 2400 0.12 0.24 0.0 0.19 0.20 0.13 55.0 0.0277 2400 0.12 0.24 0.0 0.19 0.20 0.13 77.0 0.0292 0030 0.12 0.24 0.0 0.19 0.20 0.13 77.0 0.0292 0030 0.12 0.24 0.0 0.19 0.20 0.13 77.0 0.0292 0030 0.12 0.24 0.0 0.19 0.20 0.13 77.0 0.0292 0030 0.12 0.24 0.0 0.19 0.20 0.13 77.0 0.0302 0100 0.24 0.24 0.0 0.19 0.20 0.13 77.0 0.0302 0100 0.24 0.24 0.0 0.24 0.20 0.19 0.20 0.13 0.0036 0200 0.24 0.24 0.12 0.24 0.20 0.19 98.0 0.0314 0130 0.24 0.24 0.12 0.24 0.20 0.19 98.0 0.0326 0200 0.24 0.24 0.12 0.24 0.27 0.25 0.19 101.0 0.0338 0230 0.24 0.36 0.24 0.27 0.25 0.19 101.0 0.0338 0230 0.24 0.36 0.24 0.37 0.37 0.34 0.31 102.0 0.0351 0300 0.36 0.36 0.36 0.24 0.37 0.37 0.34 0.31 102.0 0.0356 0400 0.72 0.84 1.20 1.21 1.11 1.04 102.0 0.0356 0430 0.96 1.08 1.32 1.56 1.80 1.92 1.21 1.40 1.22 143.0 0.0402 0500 1.32 1.56 1.80 2.04 2.11 1.95 1.92 191.0 0.0464 0600 1.32 1.56 1.80 2.04 2.11 1.96 1.92 190.0 0.0554 0730 1.56 1.80 2.04 2.11 1.96 1.92 190.0 0.0554 0730 1.56 1.80 2.04 2.11 1.96 1.92 190.0 0.0554 0800 1.56 1.80 2.04 2.11 1.96 1.92 190.0 0.0554 | 1830 | 0. 0 | O. O | 0.0 | 0. 01 | 0. 20 | 0. 03 | 42.0 | 0. 0223 | | 1930 0.0 0.0 0.0 0.0 0.0 0.03 0.20 0.03 41.0 0.0238 2030 0.0 0.0 0.0 0.0 0.08 0.20 0.03 41.0 0.0238 2030 0.0 0.12 0.0 0.08 0.20 0.08 43.0 0.0243 2100 0.0 0.12 0.0 0.14 0.20 0.08 46.0 0.0249 2130 0.0 0.12 0.0 0.14 0.20 0.08 48.0 0.0255 2200 0.0 0.12 0.0 0.17 0.20 0.08
50.0 0.0261 2230 0.12 0.24 0.0 0.17 0.20 0.13 53.0 0.0267 2300 0.12 0.24 0.0 0.19 0.20 0.13 53.0 0.0267 2400 0.12 0.24 0.0 0.19 0.20 0.13 77.0 0.0277 2400 0.12 0.24 0.0 0.19 0.20 0.13 77.0 0.0272 JAN. 9 0000 0.12 0.24 0.0 0.19 0.20 0.13 77.0 0.0292 UNAN. 9 0000 0.12 0.24 0.0 0.19 0.20 0.13 77.0 0.0292 0030 0.12 0.24 0.0 0.19 0.20 0.13 86.0 0.0302 0100 0.24 0.24 0.0 0.19 0.20 0.13 86.0 0.0302 0100 0.24 0.24 0.0 0.12 0.24 0.20 0.14 95.0 0.0314 0130 0.24 0.24 0.12 0.24 0.20 0.14 95.0 0.0314 0130 0.24 0.24 0.12 0.24 0.27 0.25 0.19 101.0 0.0326 0200 0.24 0.24 0.17 0.27 0.25 0.19 101.0 0.0338 0230 0.24 0.24 0.36 0.24 0.27 0.32 0.30 101.0 0.0338 0230 0.36 0.36 0.24 0.37 0.37 0.30 101.0 0.0351 0330 0.36 0.36 0.24 0.37 0.37 0.30 101.0 0.0363 0330 0.36 0.36 0.24 0.37 0.37 0.70 0.69 102.0 0.0363 0330 0.36 0.36 0.40 0.84 0.37 0.70 0.69 102.0 0.0363 0430 0.76 1.08 1.20 1.44 1.43 1.68 1.37 183.0 0.0406 0500 1.08 1.20 1.44 1.43 1.68 1.37 183.0 0.0406 0500 1.08 1.20 1.44 1.43 1.68 1.37 183.0 0.0406 0500 1.08 1.20 1.44 1.43 1.73 1.61 191.0 0.0464 0600 1.32 1.56 1.80 2.04 2.11 1.95 1.92 1700.0 0.0513 0630 1.56 1.80 2.04 2.11 1.96 1.92 1700.0 0.0513 | 1900 | 0.0 | O. O | 0.0 | 0. 03 | 0. 20 | 0.03 | 41.0 | 0. 0228 | | 2000 0.0 0.0 0.0 0.0 0.08 0.20 0.03 40.0 0.0238 2030 0.0 0.0 1.2 0.0 0.08 0.20 0.08 43.0 0.0243 2100 0.0 0.12 0.0 0.14 0.20 0.08 46.0 0.0243 2130 0.0 0.12 0.0 0.14 0.20 0.08 46.0 0.0255 2200 0.0 0.12 0.0 0.17 0.20 0.08 50.0 0.0261 2230 0.12 0.24 0.0 0.17 0.20 0.13 53.0 0.0261 2330 0.12 0.24 0.0 0.17 0.20 0.13 53.0 0.0261 2330 0.12 0.24 0.0 0.19 0.20 0.13 55.0 0.0261 2300 0.12 0.24 0.0 0.19 0.20 0.13 55.0 0.0277 2400 0.12 0.24 0.0 0.19 0.20 0.13 55.0 0.0277 2400 0.12 0.24 0.0 0.19 0.20 0.13 77.0 0.0292 0000 0.12 0.24 0.0 0.19 0.20 0.13 77.0 0.0292 0000 0.12 0.24 0.0 0.19 0.20 0.13 77.0 0.0292 0000 0.12 0.24 0.0 0.19 0.20 0.13 77.0 0.0292 0000 0.12 0.24 0.0 0.0 0.19 0.20 0.13 77.0 0.0292 0000 0.12 0.24 0.0 0.0 0.19 0.20 0.13 77.0 0.0302 0100 0.24 0.24 0.0 0.24 0.20 0.14 95.0 0.0314 0130 0.24 0.24 0.12 0.24 0.20 0.14 95.0 0.0314 0130 0.24 0.24 0.12 0.24 0.25 0.19 101.0 0.0326 0200 0.24 0.24 0.12 0.24 0.27 0.25 0.19 101.0 0.0338 0230 0.24 0.24 0.12 0.24 0.37 0.30 101.0 0.0351 0300 0.36 0.36 0.36 0.24 0.37 0.37 0.34 0.31 102.0 0.0363 0330 0.36 0.36 0.36 0.24 0.37 0.37 0.34 0.31 102.0 0.0363 0330 0.36 0.60 0.84 1.20 1.21 1.11 1.04 107.0 0.0388 0430 0.96 1.08 1.39 1.20 1.44 1.43 1.68 1.37 183.0 0.0406 0500 1.08 1.20 1.44 1.43 1.68 1.37 183.0 0.0406 0500 1.08 1.20 1.44 1.68 1.92 1.21 1.40 1.22 143.0 0.0464 0600 1.32 1.56 1.80 1.98 1.89 1.89 1.89 1.81 1.91.0 0.0587 0700 1.56 1.80 2.04 2.11 1.95 1.92 791.0 0.0584 0700 1.56 1.80 2.04 2.11 1.95 1.92 791.0 0.0684 0730 1.56 1.80 2.04 2.11 1.95 1.92 791.0 0.0684 0730 1.56 1.80 2.04 2.11 1.96 1.92 190.0 0.0158 | 1930 | 0.0 | O. O | 0. 0 | 0. 03 | 0. 20 | 0. 03 | 4J. O | 0. 0233 | | 2030 0.0 0.12 0.0 0.08 0.20 0.08 43.0 0.0249 2130 0.0 0.12 0.0 0.14 0.20 0.08 46.0 0.0249 2130 0.0 0.12 0.0 0.14 0.20 0.08 46.0 0.0255 2200 0.0 0.12 0.0 0.17 0.20 0.08 50.0 0.0261 2230 0.12 0.24 0.0 0.17 0.20 0.13 53.0 0.0267 2300 0.12 0.24 0.0 0.19 0.20 0.13 53.0 0.0267 2400 0.12 0.24 0.0 0.19 0.20 0.13 55.0 0.0277 2400 0.12 0.24 0.0 0.19 0.20 0.13 77.0 0.0272 3JAN.9 0000 0.12 0.24 0.0 0.19 0.20 0.13 77.0 0.0272 0030 0.12 0.24 0.0 0.19 0.20 0.13 77.0 0.0292 0030 0.12 0.24 0.0 0.19 0.20 0.13 77.0 0.0292 0030 0.12 0.24 0.0 0.19 0.20 0.13 77.0 0.0292 0100 0.24 0.24 0.0 0.19 0.20 0.13 77.0 0.0392 0100 0.24 0.24 0.0 0.19 0.20 0.19 96.0 0.0302 0100 0.24 0.24 0.0 0.24 0.20 0.19 96.0 0.0314 0130 0.24 0.24 0.12 0.24 0.20 0.19 96.0 0.0326 0200 0.24 0.24 0.12 0.24 0.27 0.25 0.19 101.0 0.0388 0230 0.24 0.24 0.12 0.27 0.25 0.19 101.0 0.0388 0230 0.36 0.36 0.24 0.27 0.37 0.34 0.31 102.0 0.0351 0300 0.36 0.36 0.24 0.37 0.37 0.34 0.31 102.0 0.0363 0330 0.36 0.60 0.84 0.37 0.70 0.69 102.0 0.0363 0330 0.36 0.60 0.84 1.20 1.21 1.10 1.04 102.0 0.0363 0330 0.36 0.60 0.84 1.20 1.21 1.10 1.04 102.0 0.0388 0430 0.96 1.08 1.32 1.56 1.88 1.39 1.21 1.40 1.22 143.0 0.0406 0500 1.08 1.20 1.44 1.43 1.68 1.37 183.0 0.0406 0500 1.08 1.20 1.44 1.43 1.68 1.37 183.0 0.0406 0500 1.08 1.20 1.44 1.43 1.68 1.37 183.0 0.0406 0500 1.08 1.20 1.44 1.68 1.43 1.79 1.61 1991.0 0.0587 0700 1.56 1.80 2.04 2.11 1.96 1.92 791.0 0.0587 0700 1.56 1.80 2.04 2.11 1.96 1.92 791.0 0.0686 0800 1.56 1.80 2.04 2.11 1.96 1.92 1700.0 0.0954 | 2000 | 0.0 | 0.0 | O. O | 0.08 | 0. 20 | 0. 03 | 40.0 | 0. 0238 | | 2100 0.0 0.12 0.0 0.12 0.0 0.14 0.20 0.08 46.0 0.0249 2130 0.0 0.12 0.0 0.17 0.20 0.08 46.0 0.0261 2230 0.12 0.24 0.0 0.17 0.20 0.13 53.0 0.0261 2330 0.12 0.24 0.0 0.19 0.20 0.13 53.0 0.0267 2300 0.12 0.24 0.0 0.19 0.20 0.13 55.0 0.0277 2400 0.12 0.24 0.0 0.19 0.20 0.13 77.0 0.0292 JAN. 9 0000 0.12 0.24 0.0 0.19 0.20 0.13 77.0 0.0292 0030 0.12 0.24 0.0 0.19 0.20 0.13 77.0 0.0292 0030 0.12 0.24 0.0 0.19 0.20 0.13 77.0 0.0292 0100 0.24 0.24 0.0 0.19 0.20 0.13 86.0 0.0302 0100 0.24 0.24 0.0 0.19 0.20 0.14 95.0 0.0314 0130 0.24 0.24 0.12 0.24 0.20 0.14 95.0 0.0314 0130 0.24 0.24 0.12 0.24 0.20 0.19 98.0 0.0326 0200 0.24 0.24 0.12 0.27 0.25 0.19 101.0 0.0338 0230 0.24 0.36 0.24 0.27 0.32 0.30 101.0 0.0351 0300 0.36 0.36 0.24 0.37 0.34 0.31 102.0 0.0351 0300 0.36 0.60 0.84 0.37 0.70 0.69 102.0 0.0356 0400 0.72 0.84 1 20 1.21 1.11 1.04 102.0 0.0358 0430 0.96 1.08 1.32 1.56 1.80 1.91 1.21 1.40 1.22 143.0 0.0406 0500 1.08 1.20 1.44 1.43 1.68 1.37 183.0 0.0406 0500 1.32 1.56 1.80 2.04 2.11 1.95 1.92 791.0 0.0587 0700 1.56 1.80 2.04 2.11 1.95 1.92 791.0 0.0587 0700 1.56 1.80 2.04 2.11 1.95 1.92 796.0 0.0586 | 2030 | 0. 0 | 0.12 | 0. 0 | 0.08 | 0. 20 | 0.08 | 43. 0 | 0. 0243 | | 2130 0.0 0.12 0.0 0.14 0.20 0.08 48.0 0.0251 2230 0.12 0.24 0.0 0.17 0.20 0.08 50.0 0.0261 2230 0.12 0.24 0.0 0.17 0.20 0.13 53.0 0.0267 2300 0.12 0.24 0.0 0.19 0.20 0.13 55.0 0.0277 2400 0.12 0.24 0.0 0.19 0.20 0.13 77.0 0.0272 2400 0.12 0.24 0.0 0.19 0.20 0.13 77.0 0.0292 JAN. 9 0000 0.12 0.24 0.0 0.19 0.20 0.13 77.0 0.0292 0030 0.12 0.24 0.0 0.19 0.20 0.13 77.0 0.0292 0100 0.24 0.24 0.0 0.19 0.20 0.13 86.0 0.0302 0100 0.24 0.24 0.0 0.19 0.20 0.13 86.0 0.0302 0100 0.24 0.24 0.12 0.24 0.20 0.19 98.0 0.0326 0200 0.24 0.24 0.12 0.24 0.20 0.19 98.0 0.0326 0200 0.24 0.24 0.12 0.27 0.25 0.19 101.0 0.0338 0230 0.24 0.36 0.24 0.27 0.25 0.19 101.0 0.0358 0230 0.24 0.36 0.24 0.37 0.30 101.0 0.0351 0300 0.36 0.36 0.36 0.24 0.37 0.30 101.0 0.0353 0330 0.36 0.60 0.84 0.37 0.70 0.69 102.0 0.0363 0330 0.36 0.60 0.84 0.37 0.70 0.69 102.0 0.0363 0330 0.72 0.84 1.20 1.21 1.11 1.04 102.0 0.0363 0400 0.72 0.84 1.20 1.21 1.11 1.04 102.0 0.0368 0430 0.96 1.08 1.32 1.56 1.68 1.43 1.73 1.61 1.91.0 0.0464 0500 1.08 1.20 1.44 1.43 1.68 1.37 183.0 0.0464 0500 1.32 1.56 1.80 2.04 2.11 1.95 1.92 796.0 0.0513 0600 1.56 1.80 2.04 2.11 1.95 1.92 796.0 0.0866 0800 1.56 1.80 2.04 2.11 1.96 1.92 796.0 0.0866 | 2100 | 0.0 | 0.12 | 0.0 | 0.14 | 0. 20 | 0.08 | 46. 0 | 0.0249 | | 2230 0.12 0.24 0.0 0.17 0.20 0.13 53.0 0.0281 2330 0.12 0.24 0.0 0.17 0.20 0.13 53.0 0.0267 2300 0.12 0.24 0.0 0.19 0.20 0.13 55.0 0.0277 2400 0.12 0.24 0.0 0.19 0.20 0.13 77.0 0.0292 JAN. 9 0000 0.12 0.24 0.0 0.19 0.20 0.13 77.0 0.0292 0030 0.12 0.24 0.0 0.19 0.20 0.13 77.0 0.0292 0100 0.24 0.24 0.0 0.19 0.20 0.13 86.0 0.0302 0100 0.24 0.24 0.0 0.24 0.0 0.19 0.20 0.14 95.0 0.0314 0130 0.24 0.24 0.12 0.24 0.20 0.14 95.0 0.0314 0130 0.24 0.24 0.12 0.27 0.25 0.19 101.0 0.0326 0200 0.24 0.24 0.12 0.27 0.25 0.19 101.0 0.0338 0230 0.24 0.36 0.24 0.27 0.32 0.30 101.0 0.0351 0300 0.36 0.36 0.24 0.37 0.34 0.31 102.0 0.0363 0330 0.36 0.36 0.24 0.37 0.30 101.0 0.0353 0330 0.36 0.60 0.84 0.37 0.70 0.69 102.0 0.0363 0400 0.72 0.84 1.20 1.21 1.11 1.04 102.0 0.0388 0430 0.76 1.08 1.32 1.56 1.80 1.21 1.11 1.04 1.22 143.0 0.0406 0500 1.08 1.20 1.44 1.43 1.68 1.37 183.0 0.0428 0500 1.32 1.56 1.80 1.98 1.82 1.70 399.0 0.0587 0700 1.56 1.80 2.04 2.11 1.95 1.92 791.0 0.0684 0730 1.56 1.80 2.04 2.11 1.95 1.92 791.0 0.0684 0730 1.56 1.80 2.04 2.11 1.96 1.92 1900.0 0.0954 0800 1.56 1.80 2.04 2.12 1.97 1.93 1660.0 0.1158 | 5130 | 0.0 | 0. 12 | 0.0 | 0.14 | 0. 20 | 0.08 | 48. U | 0. 0255 | | 2300 0.12 0.24 0.0 0.19 0.20 0.13 55.0 0.0287 2400 0.12 0.24 0.0 0.19 0.20 0.13 77.0 0.0292 JAN. 9 0000 0.12 0.24 0.0 0.19 0.20 0.13 77.0 0.0292 0030 0.12 0.24 0.0 0.19 0.20 0.13 66.0 0.0302 0100 0.24 0.24 0.0 0.19 0.20 0.13 66.0 0.0302 0100 0.24 0.24 0.0 0.24 0.20 0.14 95.0 0.0314 0130 0.24 0.24 0.12 0.24 0.20 0.19 98.0 0.0326 0200 0.24 0.24 0.12 0.27 0.25 0.19 101.0 0.0326 0200 0.24 0.36 0.24 0.27 0.25 0.19 101.0 0.0338 0230 0.24 0.36 0.24 0.37 0.32 0.30 101.0 0.0351 0300 0.36 0.36 0.24 0.37 0.34 0.31 102.0 0.0351 0300 0.36 0.60 0.84 0.37 0.70 0.69 102.0 0.0376 0400 0.72 0.84 1 20 1.21 1.11 1.04 102.0 0.0376 0430 0.76 1.08 1 32 1.21 1.40 1.22 143.0 0.0406 0500 1.08 1.20 1.44 1.43 1.68 1.37 183.0 0.0428 0530 1.32 1.56 1.68 1.43 1.73 1.61 191.0 0.0464 0600 1.32 1.56 1.80 1.98 1.82 1.70 199.0 0.0587 0700 1.56 1.80 2.04 2.11 1.96 1.92 1996.0 0.0587 0700 1.56 1.80 2.04 2.11 1.96 1.92 1996.0 0.0686 0800 1.56 1.80 2.04 2.12 1.96 1.92 1996.0 0.0954 0830 1.56 1.80 2.04 2.12 1.96 1.92 1996.0 0.0954 0830 1.56 1.80 2.04 2.12 1.97 1.93 1660.0 0.1158 | 2200 | 0.0 | 0. 12 | 0.0 | 0.17 | 0. 20 | 0.08 | 50. 0 | 0.0261 | | 2400 0.12 0.24 0.0 0.19 0.20 0.13 77.0 0.0272 JAN. 9 0000 0.12 0.24 0.0 0.19 0.20 0.13 77.0 0.0292 0030 0.12 0.24 0.0 0.19 0.20 0.13 77.0 0.0292 0100 0.24 0.24 0.0 0.19 0.20 0.13 86.0 0.0302 0100 0.24 0.24 0.0 0.24 0.20 0.14 95.0 0.0314 0130 0.24 0.24 0.12 0.24 0.20 0.19 96.0 0.0326 0200 0.24 0.24 0.12 0.27 0.25 0.19 101.0 0.0326 0200 0.24 0.36 0.24 0.27 0.32 0.30 101.0 0.0338 0230 0.36 0.36 0.24 0.37 0.34 0.31 102.0 0.0351 0300 0.36 0.36 0.24 0.37 0.34 0.31 102.0 0.0363 0330 0.36 0.60 0.84 0.37 0.70 0.69 102.0 0.0376 0400 0.72 0.84 1 20 1.21 1.11 1.04 102.0 0.0388 0430 0.96 1.08 1.32 1.56 1.68 1.43 1.68 1.37 183.0 0.0406 0500 1.08 1.20 1.44 1.43 1.68 1.37 183.0 0.0406 0500 1.32 1.56 1.68 1.43 1.73 1.61 191.0 0.0464 0600 1.32 1.56 1.80 2.04 2.11 1.95 1.92 191.0 0.0587 0700
1.56 1.80 2.04 2.11 1.95 1.92 1996.0 0.0584 0730 1.56 1.80 2.04 2.11 1.96 1.92 1996.0 0.0684 0730 1.56 1.80 2.04 2.11 1.96 1.92 1996.0 0.0696 | 2200 | 0.12 | 0. 24 | 0.0 | 0.17 | 0. 20 | 0.13 | 53. U | 0.0287 | | JAN. 9 0000 | 2400 | 0.12 | 0.24 | 0.0 | 0.19 | 0.20 | 0.13 | 33. U | 0.0277 | | 0000 0.12 0.24 0.0 0.19 0.20 0.13 77.0 0.0292 0030 0.12 0.24 0.0 0.19 0.20 0.13 86.0 0.0302 0100 0.24 0.24 0.0 0.24 0.20 0.14 95.0 0.0314 0130 0.24 0.24 0.12 0.24 0.20 0.19 98.0 0.0326 0200 0.24 0.24 0.17 0.27 0.25 0.19 101.0 0.0326 0200 0.24 0.36 0.24 0.27 0.32 0.30 101.0 0.0338 0300 0.36 0.36 0.24 0.37 0.34 0.31 102.0 0.0363 0330 0.36 0.60 0.84 0.37 0.70 0.69 102.0 0.0376 0400 0.72 0.84 1.20 1.21 1.11 1.04 102.0 0.0388 0430 0.96 1.08 </td <td>.IAN 9</td> <td>U. 12</td> <td>U. E-1</td> <td>U. U</td> <td>0.17</td> <td>0. 20</td> <td>0. 13</td> <td>//. U</td> <td>U. UE72</td> | .IAN 9 | U. 12 | U. E-1 | U. U | 0.17 | 0. 20 | 0. 13 | //. U | U. UE72 | | 0030 0.12 0.24 0.0 0.19 0.20 0.13 86.0 0.0302 0100 0.24 0.24 0.0 0.24 0.20 0.14 95.0 0.0314 0130 0.24 0.24 0.12 0.24 0.20 0.19 98.0 0.0326 0200 0.24 0.24 0.17 0.27 0.25 0.19 101.0 0.0338 0230 0.24 0.36 0.24 0.37 0.32 0.30 101.0 0.0351 0300 0.36 0.36 0.24 0.37 0.34 0.31 102.0 0.0351 0330 0.36 0.60 0.84 0.37 0.70 0.69 102.0 0.0376 0400 0.72 0.84 1.20 1.21 1.11 1.04 102.0 0.0388 0430 0.96 1.08 1.32 1.21 1.40 1.22 143.0 0.0406 0500 1.08 1.20 | 0000 | 0 12 | 0.24 | 0.0 | 0.19 | 0.20 | 0.13 | 77.0 | 0.0292 | | 0100 | 0030 | 0 12 | 0.24 | 0 0 | 0.19 | 0.20 | 0.13 | 86.0 | 0.0302 | | 0130 | 0100 | 0. 24 | 0. 24 | 0.0 | 0. 24 | 0. 20 | 0. 14 | 95. 0 | 0. 0314 | | 0200 0. 24 0. 24 0. 12 0. 27 0. 25 0. 19 101.0 0. 0338 0230 0. 24 0. 36 0. 24 0. 27 0. 32 0. 30 101.0 0. 0351 0300 0. 36 0. 36 0. 24 0. 37 0. 34 0. 31 102.0 0. 0363 0330 0. 36 0. 60 0. 84 0. 37 0. 70 0. 69 102.0 0. 0376 0400 0. 72 0. 84 1. 20 1. 21 1. 11 1. 04 102.0 0. 0388 0430 0. 96 1. 08 1. 32 1. 21 1. 40 1. 22 143.0 0. 0406 0500 1. 08 1. 20 1. 44 1. 43 1. 68 1. 37 183.0 0. 0428 0530 1. 32 1. 56 1. 68 1. 43 1. 73 1. 61 291.0 0. 0464 0600 1. 32 1. 56 1. 80 1. 98 1. 82 1. 70 399.0 0. 0513 | 0130 | 0. 24 | 0. 24 | 0. 12 | 0. 24 | 0. 20 | 0. 19 | 98. 0 | 0.0326 | | 0230 0. 24 0. 36 0. 24 0. 27 0. 32 0. 30 101. 0 0. 0351 0300 0. 36 0. 36 0. 24 0. 37 0. 34 0. 31 102. 0 0. 0363 0330 0. 36 0. 60 0. 84 0. 37 0. 70 0. 69 102. 0 0. 0376 0400 0. 72 0. 84 1. 20 1. 21 1. 11 1. 04 102. 0 0. 0376 0430 0. 96 1. 08 1. 32 1. 21 1. 40 1. 22 143. 0 0. 0406 0500 1. 08 1. 20 1. 44 1. 43 1. 68 1. 37 183. 0 0. 0406 0530 1. 32 1. 56 1. 68 1. 43 1. 73 1. 61 191. 0 0. 0464 0600 1. 32 1. 56 1. 80 1. 98 1. 82 1. 70 399. 0 0. 0513 0630 1. 44 1. 68 1. 92 1. 98 1. 89 1. 81 595. 0 0. 0587 | 0200 | 0. 24 | 0. 24 | 0.12 | 0. 27 | 0. 25 | 0.19 | 101.0 | 0. 0338 | | 0300 0.36 0.36 0.24 0.37 0.34 0.31 102.0 0.0363 0330 0.36 0.60 0.84 0.37 0.70 0.69 102.0 0.0376 0400 0.72 0.84 1.20 1.21 1.11 1.04 102.0 0.0388 0430 0.96 1.08 1.32 1.21 1.40 1.22 143.0 0.0406 0500 1.08 1.20 1.44 1.43 1.68 1.37 183.0 0.0428 0530 1.32 1.56 1.68 1.43 1.73 1.61 291.0 0.0464 0600 1.32 1.56 1.80 1.98 1.82 1.70 399.0 0.0513 0630 1.44 1.68 1.92 1.98 1.89 1.81 595.0 0.0587 0700 1.56 1.80 2.04 2.11 1.95 1.92 791.0 0.0684 0730 1.56 1.80 2.04 2.11 1.96 1.92 796.0 0.0806 0800 1.56 1.80 2.04 2.12 1.96 1.92 1200.0 0.0754 | 0230 | 0. 24 | 0. 36 | 0. 24 | 0. 27 | 0. 32 | 0. 30 | 101.0 | 0. 0351 | | 0330 | 0300 | 0. 36 | 0. 36 | 0. 24 | 0. 37 | 0. 34 | 0. 31 | 102, 0 | 0. 0 363 | | 0400 0,72 0,84 1,20 1,21 1,11 1,04 1,07,0 0,0388 0430 0,76 1,08 1,32 1,21 1,40 1,22 143,0 0,0406 0500 1,08 1,20 1,44 1,43 1,68 1,37 183,0 0,0428 0530 1,32 1,56 1,68 1,43 1,73 1,61 1,91,0 0,0464 0600 1,32 1,56 1,80 1,98 1,82 1,70 397,0 0,0513 0630 1,44 1,68 1,92 1,98 1,82 1,70 397,0 0,0513 0700 1,56 1,80 2,04 2,11 1,95 1,81 595,0 0,0587 0730 1,56 1,80 2,04 2,11 1,96 1,92 791,0 0,0684 0800 1,56 1,80 2,04 2,12 1,96 1,92 1,200,0 0,0954 0830 1,56 | 0330 | 0. 36 | 0. 60 | 0 84 | 0. 37 | 0. 70 | 0. 69 | 102.0 | 0. 0376 | | 0430 0.96 1.08 1.32 1.21 1.40 1.22 143.0 0.0406 0500 1.08 1.20 1.44 1.43 1.68 1.37 183.0 0.0428 0530 1.32 1.56 1.68 1.43 1.73 1.61 191.0 0.0464 0600 1.32 1.56 1.80 1.98 1.82 1.70 397.0 0.0513 0630 1.44 1.68 1.92 1.98 1.89 1.81 595.0 0.0587 0700 1.56 1.80 2.04 2.11 1.95 1.92 791.0 0.0684 0730 1.56 1.80 2.04 2.11 1.96 1.92 796.0 0.0886 0800 1.56 1.80 2.04 2.12 1.96 1.92 1200.0 0.0954 0830 1.56 1.80 2.04 2.12 1.97 1.93 1660.0 0.1158 | 0400 | 0. 72 | 0. 84 | 1 20 | 1. 21 | 1.11 | 1. 04 | JOP. 0 | 0. 0388 | | 0500 1. 08 1. 20 1. 44 1. 43 1. 68 1. 37 183. 0 0. 0428 0530 1. 32 1. 56 1. 68 1. 43 1. 73 1. 61 (91. 0) 0. 0464 0600 1. 32 1. 56 1. 80 1. 98 1. 82 1. 70 399. 0 0. 0513 0630 1. 44 1. 68 1. 92 1. 98 1. 89 1. 81 595. 0 0. 0587 0700 1. 56 1. 80 2. 04 2. 11 1. 95 1. 92 791. 0 0. 0684 0730 1. 56 1. 80 2. 04 2. 11 1. 96 1. 92 796. 0 0. 0886 0800 1. 56 1. 80 2. 04 2. 12 1. 96 1. 92 1200. 0 0. 0954 0830 1. 56 1. 80 2. 04 2. 12 1. 97 1. 93 1660. 0 0. 1158 | 0430 | 0. 9 6 | 1.08 | 1 32 | 1. 21 | 1.40 | 1. 22 | J 43. O | 0. 0406 | | 0530 1,32 1,56 1,68 1,43 1,73 1,61 ;91,0 0,0464 0600 1,32 1,56 1,80 1,98 1,82 1,70 399,0 0,0513 0630 1,44 1,68 1,92 1,98 1,89 1,81 595,0 0,0587 0700 1,56 1,80 2,04 2,11 1,95 1,92 791,0 0,0684 0730 1,56 1,80 2,04 2,11 1,96 1,92 796,0 0,0806 0800 1,56 1,80 2,04 2,12 1,96 1,92 1/200,0 0,0954 0830 1,56 1,80 2,04 2,12 1,97 1,93 1,660,0 0,1158 | 0500 | 1.08 | 1. 20 | 1. 44 | 1. 43 | 1.68 | 1. 37 | 183. O | 0. 0428 | | 0600 1.32 1.56 1.80 1.98 1.82 1.70 397.0 0.0513 0630 1.44 1.68 1.92 1.98 1.89 1.81 595.0 0.0587 0700 1.56 1.80 2.04 2.11 1.95 1.92 791.0 0.0684 0730 1.56 1.80 2.04 2.11 1.96 1.92 796.0 0.0806 0800 1.56 1.80 2.04 2.12 1.96 1.92 1200.0 0.0954 0830 1.56 1.80 2.04 2.12 1.97 1.93 1660.0 0.1158 | 0530 | 1.32 | 1.56 | 1.68 | 1. 43 | 1. 73 | 1.61 | 291.0 | 0.0464 | | 0430 1.44 1.68 1.92 1.98 1.87 1.81 395.0 0.0587
0700 1.56 1.80 2.04 2.11 1.95 1.92 791.0 0.0684
0730 1.56 1.80 2.04 2.11 1.96 1.92 796.0 0.0806
0800 1.56 1.80 2.04 2.12 1.96 1.92 1200.0 0.0954
0830 1.56 1.80 2.04 2.12 1.97 1.93 1660.0 0.1158 | 0600 | 1.32 | 1.56 | 1.80 | 1. 78 | 1.82 | 1.70 | 397. 0 | 0.0513 | | 0730 1.56 1.80 2.04 2.11 1.95 1.92 791.0 0.0684 0730 1.56 1.80 2.04 2.11 1.96 1.92 796.0 0.0806 0800 1.56 1.80 2.04 2.12 1.96 1.92 1200.0 0.0954 0830 1.56 1.80 2.04 2.12 1.97 1.93 1660.0 0.1158 | 0200 | 1.44
1 = 4 | 1.68 | 1.92 | 1.98 | 1.89 | 1.81 | 595, O | 0.0587 | | 0800 1.56 1.80 2.04 2.12 1.96 1.92 1200.0 0.0954 0830 1.56 1.80 2.04 2.12 1.97 1.93 1660.0 0.1158 | 0700 | 1.00 | 1.80 | ≥. U4
⊃. 04 | e. 11 | 1.70 | 1.72 | /Y1. U | 0.0084 | | 0830 1.56 1.80 2.04 2.12 1.97 1.93 J660.0 0.1158 | 0800 | 1.56 | 1.80 | 2.04 | 5. II | 1.70 | 1.74 | 776, U | 0.0000 | | 2. 12 1. 00 2. 01 E. 12 1. 77 1. 70 1000. 0 0. 1100 | 0830 | 1.56 | 1 80 | 2.04 | 2 12 | 1.70 | 1.74 | 1560.0 | 0.0704 | | | | · | | *. V7 | | | | | | # STORM RAINFALL AND RUNOFF OB075500 SIMS BAYOU AT HOUSTON, TEX. | DATE
AND
TIME | ACCUMU-
LATED
RAIN- | ACCUMU-
LATED
RAIN- | ACCUMU -
LATED
RAIN- | ACCUMU-
LATED
RAIN-
FALL
AT
GAGE
308R | ACCUMU-
LATED
RAIN- | ACCUMU-
LATED
WEIGHTED | DISCHARGE | ACCUMU-
LATED
RUNDFF | |---------------------|--|---------------------------|----------------------------|---|---------------------------|------------------------------|---------------------------------------|----------------------------| | | FALL | FALL | FALL. | FALL | FALL | KAINFALL | | | | | AT
GAGE | OACE | 0405 | 0405 | OACE | | CHRIC | | | | 5500 | 5470 | 5400 | 3000 | 210 | | CEET | | | | 3300 | 3470 | 3400 | JOOK | QII. | | FFET
PFR | | | | (INCHES) | (INCHES) | (INCHES) | (INCHES) | (INCHES) | (INCHES) | SECOND) | (INCHES) | | ********** | - 40 mg day day ag ag may may ag day . | STORM | OF JAN. 8 | -12, 1984 | COA | ITINUED | | | | JAN. 9 | | | | | | | | | | 0900 | 1. 56 | 1.80 | 2. 04 | 2. 12 | 1. 97 | 1. 93 | 2110.0 | 0. 1547 | | 1000 | 1. 56 | 1.80 | 2. 04 | 2. 12 | 1. 97 | 1. 93 | 2140.0 | 0. 2074 | | 1100 | 1.56 | 1.80 | 2.04 | 2. 12
2. 12
2. 12
2. 12
2. 12
2. 12
2. 16
2. 16
2. 28
2. 28
2. 32
2. 32
2. 32
2. 32
2. 32
2. 32
2. 32 | 1. 97 | 1. 73 | 2370. Q | 0. 2661 | | 1200 | 1. 36 | 1.80 | 2. 04 | 2. 12 | 1.97 | 1.93 | 2520. U | 0.3126 | | 1230 | 1. 20 | 1.80 | 2.04 | 2. 12 | 1. 77 | 1.93 | 254U. U | 0.3437 | | 1300
1330 | 1.30 | 1.80 | 2.04 | 2.12 | 1.77 | 1.73 | 200. U | 0.3/50 | | 1400 | 1.30 | 1.72 | 2.04 | 2. LE | 2.04 | 1.77 | 2420. U | 0.4055 | | 1430 | 1.30 | 1.72 | 2.04 | 2.10 | 2.04 | 2.04 | 2460. Q | 0.4552 | | 1500 | 1 48 | 2 16 | 2 28 | 2.10 | 2 14 | 2 19 | 2250.0 | 0.4017 | | 1530 | 1.68 | 2 16 | 2 28 | 2 28 | 2.10 | 2 19 | 2170.0 | 0.5184 | | 1600 | 1 80 | 2 16 | 2 28 | 2 32 | 2 16 | 2 20 | 2080 0 | 0.5823 | | 1800 | 1. 80 | 2. 16 | 2 28 | 2.32 | 2.16 | 2 20 | 1960. 0 | 0. 6547 | | 1900 | 1. 80 | 2.28 | 2. 28 | 2.32 | 2.16 | 2.24 | 1860. 0 | 0.7004 | | 2000 | 1.80 | 2. 28 | 2. 28 | 2. 32 | 2.16 | 2. 24 | 1780. 0 | 0. 7661 | | 2200 | 1.80 | 2. 28 | 2. 28 | 2. 32 | 2. 16 | 2. 24 | 1570. 0 | 0. 8443 | | 2400 | 1. 80 | 2. 28 | 2. 28 | 2. 32 | 2. 16 | 2. 24 | 1390. 0 | 0. 9298 | | JAN. 10 | | | | | | | | | | 0000 | | 2. 28 | 2. 28 | 2. 32 | 2. 16 | 2. 24 | 1390. 0 | 0. 9298 | | 0300 | 1.80
1.80 | 2. 28
2. 28 | 2. 28
2. 28 | 2. 32 | 2. 16 | 2. 24 | 1090. 0 | 1.0102 | | 0600 | 1.80 | 2. 28 | 2. 28 | 2. 32 | 2. 16 | 2. 24 | 1090. 0
845. 0
677. 0
558. 0 | 1. 0725 | | 0900 | 1.80 | 2. 28
2. 28 | 2. 28
2. 28 | 2. 32 | 2. 16 | 2. 24 | 677. Q | 1. 1225 | | 1200 | 1.80 | 2. 28 | 2. 28 | 2. 32 | 2. 16 | 2. 24 | 558. 0 | 1. 1843 | | 1800 | 1.80 | 2. 28 | 2. 28 | 2. 32
2. 32 | 2. 16 | 2. 24 | 410. Q | 1. 2448 | | 2400 | 1. 80 | 2. 28 | 2. 28 | 2. 32 | 2. 16 | 2. 24
 319. 0 | 1. 2918 | | JAN. 11 | | | | | | | | | | 0000 | 1. 80 | 2. 28
2. 28 | 2. 28
2. 28 | 2. 32 | 2. 16 | 2. 24 | 317. 0 | 1. 2918 | | 0600 | 1.80 | 2. 28 | 2. 28 | 2. 32 | 2. 16 | 2. 24 | 228. O | 1. 3255 | | 1200 | 1.80
1.80 | 2. 28
2. 28 | 2. 28
2. 28 | 2. 32
2. 32
2. 32
2. 32 | 2. 16 | 2. 24 | 177. Q | 1. 3516 | | 1800 | 1.80 | 2. 28 | 2. 28 | 2. 32 | 2. 16 | 2. 24 | 159. 0 | 1. 3751 | | 2400
JAN. 12 | | | | 2. 32 | | | | 1. 3959 | | 0000 | 1.80 | 2. 28 | 2. 28 | 2. 32 | 2. 16 | 2. 24 | J41. 0 | 1. 3959 | | 0600 | 1.80 | 2. 28 | 2. 28
2. 28 | 2. 32 | 2. 16 | 2. 24 | 123. 0 | 1. 4140 | | 1200 | 1.80 | 2. 28
2. 28
2. 28 | 2. 28 | 2. 32 | 2. 16 | 2. 24 | 97. O | 1. 4284 | | 1800 | 1.80 | 2. 28
2. 28 | 2. 28
2. 28 | 2. 32
2. 32
2. 32
2. 32
2. 32 | 2. 16 | 2. 24 | 86. 0 | 1.4410 | | 2400 | 1.80
1.80 | 2. 28 | 2. 28 | 2. 32 | 2. 16 | 2. 24 | 75. 0 | 1. 4466 | ### BERRY BAYOU DRAINAGE BASIN The locations of data-collection sites in and near the Berry Bayou drainage basin are shown in figure 15. Weighted-mean rainfall over the drainage basin for the 1984 water year was not determined. The storm of Aug. 12-13 was selected for analysis at both gaging station 08075550, Berry Bayou at Gilpin Street and station 08075650, Berry Bayou at Forest Oaks Street. Figure 15.-Locations of data-collection sites in and near the Berry Bayou drainage basin TX-35 Rev. 5/80 # UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY-TEXAS DISTRICT ANNUAL STORM RAINFALL-RUNOFF SUMMARY DATA Table 14. -- Storm rainfall-runoff data, 1984 Water Year, Berry Bayou | | 85% | | Rainfall | Rainfall (inches) | | | Ratio | Maximum | |------------------|----------|-------------|---|-------------------------------------|------------------|----------|-----------|---------------------------------| | Date of Storm | Duration | Weighted | Maximum Incr | Maximum Increment Recorded in Basin | ed in Basin | Runoff | runoff to | discharge | | | (hours) | Total | 15-minute 30-minute | 30-minute | 60-minute | (inches) | rainfall | (ft ³ /s) | | | | Berry
(1 | Bayou at Gilpin St., Houston, TX. (Drainaage Area 2.56 mi. ²) | in St., Hous
a 2.56 mi | on, TX. | | | | | Aug. 12-13, 1984 | 1.3 | 3.12 | 0.96 | 1.56 | 2.40 | 1.58 | 0.51 | 378* | | | | | | | | | | | | | | 4 | - | | | | | | | | | | | | | | Berry Bay | ayou at Forest Oaks St., Houston, TX. (Drainage Area 10.7 mi.2) | Oaks St., Ho
a 10.7 mi. | uston, TX.
2) | · | | Maximum
Gage Height
(ft.) | | Aug. 12-13, 1984 | 1.0 | 3.12 | 0.90 | 1.80 | 2.52 | 4 6 | 1 | 12.59* | - | | | | | | | | | | | | | | | * - Peak Discharge/Gage Height for 1984 Water Year # 08075550 BERRY BAYOU AT GILPIN STREET, HOUSTON, TEX. (Flood-hydrograph partial-record station) LOCATION.--Lat 29°38'32", long 95°13'22", Harris County, Hydrologic Unit 12040104, at bridge on Gilpin Street in southeast Houston. DRAINAGE AREA.--2.56 mi². Oct. 1, 1973 to Oct. 1, 1978, 2.87 mi². Prior to Oct. 1, 1973, 3.26 mi². PERIOD OF RECORD. -- April 1964 to current year. GAGE.--Digital flood-hydrograph and rainfall recorders and crest-stage gage. Prior to April 26, 1978 a flood hydrograph and rainfall recorder (type SR) and a crest-stage gage. Datum of gage is National Geodetic Vertical Datum of 1929, 1959 adjustment, unadjusted for land surface subsidence. REMARKS. -- Records fair. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 738 ft³/s May 10, 1968; maximum elevation, 37.07 ft, July 26, 1979. Minimum not determined. EXTREMES FOR CURRENT YEAR.--Peak discharges above base of $300 \text{ ft}^3/\text{s}$ and maximum (*): | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | |---------|------|-----------------------------------|---------------------| | Aug. 12 | 1615 | *378 | 33.52 | Minimum discharge not determined. # STORM RAINFALL AND RUNOFF 08075550 BERRY BAYOU AT GILPIN STREET, HOUSTON, TEX. | | | | | . 400 | |---|------------------------|--|-----------------------|----------------------------| | DATE
AND
TIME | LATED
RAIN-
FALL | ACCUMU-
LATED
WEIGHTED
RAINFALL | DISCHARGE | ACCUMU-
LATED
RUNOFF | | | AT
GAGE
5550 | | (CUBIC
FEET
PER | | | | (INCHES) | (INCHES) | | (INCHES) | | *************************************** | STORM | OF AUG. 12 |
2-13, 1984 | | | AUG. 12 | | | | | | 0000 | O. O | 0. 0 | 0. 3 | 0. 0005 | | 0600 | 0. 0 | O. O | 0. 3 | 0. 0016 | | 1200 | O . O | O. O | 0. 3 | 0. 0024 | | 1415 | O. O | O. O | 0. 3 | 0. 0026 | | 1430 | 0. 24 | 0. 24 | 10. 0 | 0. 0041 | | 1445 | 0.72 | 0. 72 | 70. 0 | 0.0147 | | 1500 | 1.68 | 1. 68 | 136. 0 | 0. 0353 | | 1515 | 2. 28 | 2. 28 | 253. 0 | 0. 07 36 | | 1530 | 2. 64 | 2.64 | 319. 0 | 0. 1219 | | 1545 | 2. 88 | 2. 88 | 359. 0 | 0. 1762 | | 1600 | 2. 88 | 2. 88 | 375 . 0 | 0. 2329 | | 1615 | 2. 88 | 2. 88 | 378. O | 0. 2901 | | 1630 | 3.00 | 3.00 | 375 . 0 | 0. 3469 | | 1645 | 3. 00 | 3. 00 | 371 . 0 | 0. 403 0 | | 1700 | 3. 00 | 3. 00 | 366. 0 | 0. 4861 | | 1730 | 3.00 | 3. 00 | 349 . 0 | 0. 5 917 | | 1800 | 3.00 | 3. 00 | 327 . 0 | 0. 6907 | | 1830 | 3.00 | 3. 00 | 2 99. 0 | 0. 7812 | | 1900 | 3. 00 | 3. QO | 270. 0 | 0. 90 38 | | 2000 | 3.00 | 3. 00 | 204. 0 | 1. 0272 | | 2100 | 3. 00 | 3. 00 | 150.0 | 1.1180 | | 2200 | 3.00 | 3. 00 | 118.0 | 1. 1895 | | 2300 | 3. 00 | 3. 00 | 95. O | 1. 2470 | | 2400 | 3. 00 | 3. 00 | 8 0. 0 | 1. 3196 | | AUG. 13 | | | | 4 4 4 | | 0000 | 3.00 | 3.00 | 80. 0 | 1. 3196 | | 0200 | 3.00 | 3.00 | 60. 0 | 1.3922 | | 0400 | 3.00 | 3.00 | 43 . 0 | 1.4443 | | 0600
1200 | 3.00 | 3. 00 | 30.0 | 1.5169 | | 1600 | 3.00 | 3.00 | 11.0 | 1.5502 | | 1700 | 3. 00
3. 12 | 3.00 | 7. 0 | 1. 5608 | | 1800 | 3. 12
3. 12 | 3. 12 | 6. 0
5. 0 | 1. 5645
1. 5750 | | 2400 | 3. 12
3. 12 | 3. 12
3. 12 | 5. 0
2. 0 | 1. 5750
1. 5787 | | £7VV | J. IC
 | J. IE | E. V | 1. J/O/ | ### 08075650 BERRY BAYOU AT FOREST OAKS STREET. HOUSTON. TX LOCATION.--Lat 29°40'35", long 95°14'37", Harris County, Hydrologic Unit 12040104, at gaging station at Forest Oaks Street Bridge in southeast Houston, 0.8 mi upstream from mouth of Berry Creek, and 1.7 mi upstream from Sims Bayou. DRAINAGE AREA. --10.7 mi². Prior to Oct. 1, 1973, 11.1 mi². Oct. 1, 1976, to Dec. 31, 1977, 10.1 mi². Drainage ditch relocations resulted in drainage area changes. PERIOD OF RECORD.--October 1967 to current year (stage only beginning October 1982). October 1966 to September 1982 operated as partial discharge or flood-hydrograph partial-record station. April 1964 to September 1966 operated as a daily discharge station. Water-quality records.--Chemical, biochemical, and pesticide analyses: October 1968 to September 1981. Water temperatures: April 1964 to September 1981. REVISED RECORDS. -- WRD TX-80-2: 1979(P). GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 2.72 ft below National Geodetic Vertical Datum of 1929, 1973 adjustment prior to Oct. 1, 1982, auxiliary water-stage recorder 0.8 mi downstream at same datum. June 25, 1964, to Jan. 11, 1965, auxiliary nonrecording gage 0.8 mi downstream at same datum. Rain gage also located at station. REMARKS.--Low stages affected by tidal surge. Rises sometimes affected by backwater from Sims Bayou. The reports "Hydrologic Data for Urban Studies in the Houston, Texas Metropolitan area," for the water years 1965-82 contain additional storm runoff data for this station. Stage and rainfall radio-telemeter located at station. EXTREMES FOR PERIOD OF RECORD .-- Maximum discharge, 5,080 ft 3/s, June 9, 1975; maximum gage height, 23.85 ft Sept. 20, EXTREMES FOR CURRENT YEAR .-- Maximum gage height, 12.60 ft Aug. 12 at 1715 hours; minimum gage height, 2.69 ft Apr. 17. ### CAGE HEIGHT, IN FEET, WATER YEAR OCTOBER 1983 TO SEPTEMBER 1984 | DAY | OCT | | DEC | JAN | | | APR | MAY | JUNE | JULY | AUG
max. min. | SEPT | |----------------------------------|--|--|---|--|--|--|--|--|--|--|--|---| | 1
2
3
4
5 | 5.78 3.88
5.61 3.88
5.58 4.02
5.87 4.11 | 6.16 4.75
6.05 4.79
6.02 4.72
5.67 4.03 | 6.02 3.83
5.94 4.34
8.27 5.27
5.73 3.73
5.61 3.95 | | 4.58 3.06
4.77 3.37
4.77 3.13
4.45 3.05 | 4.22 3.07
4.35 3.14
4.34 3.51
5.37 4.27 | 4.83 3.87
6.18 4.80
5.16 3.82
3.98 2.77 | 5.28 3.45
5.60 3.95
5.35 3.65
5.32 3.02 | 5.90 3.87
5.53 3.74
5.40 3.32
5.67 3.35 | | 5.75 4.35
5.95 4.75
5.65 4.75
6.83 4.35 | 6.05 4.33
7.97 4.67
9.72 4.60
5.20 3.87
5.04 3.80 | | 6
7
8
9 | 6.01 4.59
5.98 4.28
5.76 3.90 | 6.06 3.76
5.77 4.18
6.12 4.08 | 5.17 2.88
4.92 3.26
5.20 3.58
5.36 3.80
6.02 4.57 | 4.59 3.43
5.14 4.07
10.83 5.14 | 4.60 3.30
5.10 3.72
5.87 4.15 | 4.55 3.12
4.45 3.27
4.82 3.16 | 6.34 3.18
5.66 3.97
5.08 2.98 | 5.97 4.07
5.25 2.74 | 6.30 4.96
6.32 5.38
6.24 5.13 | | 5.85 4.12
5.22 3.95
5.62 3.85 | 6.10 4.38
7.14 4.93
7.14
5.67
5.72 4.89
5.75 4.97 | | 11
12
13
14
15 | 5.69 3.18
4.59 3.35
5.50 3.65 | 5.06 3.78
5.24 3.82
5.13 3.90 | 5.85 3.27
4.74 3.06
5.47 3.08
4.38 2.88
4.61 3.24 | 5.09 4.21
4.68 3.33
4.83 3.46 | 5.79 4.94
5.34 3.62
5.64 3.65 | 5.68 4.28
6.65 3.84
5.37 3.49 | 5.60 4.00
5.28 3.82
5.02 3.49 | 5.21 4.08
4.93 3.53
4.67 3.00 | 6.20 4.42
5.92 4.08
5.66 3.65 | | 5.27 3.65
12.60 3.68
7.65 5.12
6.88 4.02
6.00 4.45 | 5.75 4.80
5.43 4.41
5.21 3.98 | | 16
17
18
19
20 | 6.87 4.87
5.98 4.81
6.59 4.92 | 5.26 4.03
5.67 4.57
6.72 4.77 | 5.14 3.78
4.46 2.92 | 5.42 3.54
5.37 3.17
4.28 3.08 | 5.40 3.77
5.78 4.35
5.24 3.19 | 5.42 3.94
4.95 3.68 | 3.93 2.69
4.90 2.83
5.39 3.32 | 5.90 3.45
6.72 4.12
7.40 4.55 | 5.98 4.01
6.02 4.00
5.77 4.10 | 4.83 3.50
7.95 3.60
6.20 4.55 | 4.93 4.10
4.85 3.78
4.61 3.48
4.55 3.32
4.85 3.42 | 5.83 4.82
6.39 4.95
6.22 4.95 | | 21
22
23
24
25 | 5.42 3.64
5.00 3.40 | | | 5.62 4.70
7.57 5.65
6.11 4.43 | 4.83 3.57
4.95 3.15
4.13 3.09 | 5.40 3.38
6.07 4.22
5.10 3.30 | 4.87 2.91
4.60 2.88
4.69 3.16 | | | 5.33 3.80
5.19 3.67
5.61 3.65 | 5.22 3.42
5.15 3.35
4.93 3.27
7.85 3.20
5.90 4.43 | 8.35 6.45
6.48 5.75
6.92 5.45 | | 26
27
28
29
30
31 | 5.45 3.78
5.38 3.75
5.48 3.85 | 5.98 - | | 5.12 3.54
4.58 3.04
4.50 3.02
4.45 2.94 | 5.53 3.06
3.52 2.95
3.40 2.95 | 5.70 3.93
5.32 2.83
- 2.73
4.40 3.00 | 5.92 4.39
5.50 4.30
6.42 4.73
5.37 3.94 | 5.60 4.60
5.53 4.38
5.40 4.10
4.52 3.55
5.40 3.05
5.68 3.80 | | 5.78 3.45
5.78 3.65
5.55 3.75
5.80 3.65 | 5.40 3.98
5.65 3.65
5.10 3.93
5.07 3.84
5.10 4.05
5.32 3.95 | 6.29 4.59
5.84 4.10
5.28 3.84
4.87 3.75 | STORM RAINFALL AND RUNOFF 08075650 BERRY BAYOU AT FOREST DAKS ST., HOUSTON, TEX. | DATE
AND
TIME | FALL
AT
GAGE
5550 | LATED
RAIN-
FALL
AT
GAGE
5725 | LATED
WEIGHTED
RAINFALL | STAGE | |---------------------|----------------------------|--|-------------------------------|--| | | (INCHES) | (INCHES) | (INCHES) | (FEET) | | | STORM | OF AUG. | 12-13, 1984 | and 1000 | | AUG. 12 | | | | | | 0000 | O. O | O. O | 0. 0 | 4. 48 | | 0600 | O . O | 0. 0 | 0. 0 | 3. 99 | | 1200 | O. O | 0. 0 | 0. 0 | 5. 24 | | 1400 | 0. 0 | 0 . 0 | 0. 0 | 5. 24 | | 1430 | 0. 24 | 0 . 0 | 0 . 20 | 5. 18 | | 1500 | 1.68 | 0.72 | 1. 54 | 5. 35 | | 1530 | 2. 64 | 2. 52 | 2. 62 | 7. 75 | | 1600 | 2. 88 | 2. 88 | 2. 88 | 10. 10 | | 1630 | 3. 00 | 2.88 | 2. 98 | 12. 22 | | 1700 | 3. 00 | 3.00 | 3. 00 | 12. 59 | | 1730 | 3. 00 | 3.00 | 3. 00 | 12. 58 | | 180 0 | 3. 00 | 3.00 | 3. 00 | 12. 3 7 | | 1830 | 3. 00 | 3.00 | 3. 00 | 12. 04 | | 1900 | 3. 00 | 3.00 | 300 | 11.68 | | 1930 | 3. 00 | 3 00 | 3. 00 | 11. 27 | | 2000 | 3. 00 | 3.00 | 3. 00 | 10. 85 | | 2030 | 3. 00 | 3.00 | 3. 00 | 10. 43 | | 2100 | 3, 00 | 3. 00 | 3. 00 | 10.00 | | 2130 | 3. 00 | 3. 00 | 3. 00 | 9. 53 | | 2200 | 3. 00 | 3.00 | 3. 00 | 9.06 | | 5530 | 3. 00 | 3.00 | 3. 00 | 8. 63 | | 2300 | 3. 00 | 3. 00 | 3. 00 | 8. 20 | | 2330 | 3. 00 | 3.00 | 3. 00 | 7. 92 | | 2400 | 3. 00 | 3. 00 | 3. 00 | 7. 65 | | AUG. 13 | | | | | | 0000 | 3. 00 | 3.00 | 3. 00 | 7. 65 | | 0200 | 3. 0 0 | 3. 00 | 3. 00 | 6. 92 | | 0400 | 3. 00 | 3.00 | 3. 00 | 6. 28 | | 0600 | 3. 00 | 3.00 | 3. 00 | 5. 69 | | 0800 | 3. 0 0 | 3. 00 | 3. 00 | 5. 27 | | 1000 | 3. 00 | 3. 00 | 3. 00 | 5. 17 | | 1200 | 3. 00 | 3. 00 | 3. 00 | 5. 31 | | 1400 | 3. 00 | 3. 00 | 3. 00 | 5. 27 | | 1600 | 3. 00 | 3. 12 | 3. 02 | 5. 12 | | 1800 | 3. 12 | 3. 12 | 3. 12 | 5. 21 | | 2000 | 3. 12 | 3. 12 | 3. 12 | 5. 34 | | 5500 | 3. 12 | 3. 12 | 3. 12 | 5. 47 | | 2400 | 3. 12 | 3. 12 | 3. 12 | 4. 97 | | | | | | | STAGE RECORDS ARE RELATIVE TO GAGE DATUM. DISCHARGE RECORDS ARE NOT CURRENTLY AVAILABLE FOR THIS STORM. ### VINCE BAYOU DRAINAGE BASIN The locations of data-collection sites in and near the drainage basin are shown in figure 16. Weighted-mean rainfall in the drainage basin based on two rain gages for the 1984 water year was 43.89 inches or 4.30 inches less than the 30-year (1941-70) average of 48.19 inches for Houston. The monthly totals, in inches, for the 1984 water year weighted-mean rainfall are as follows: Oct. Nov. Dec. Jan. Feb. Mar. Apr. May June July Aug. Sept. Total 2.13 3.64 3.37 3.60 2.85 1.36 0.37 3.88 1.88 5.68 9.66 5.47 43.89 The storm of Aug. 12-13 was selected for analysis at station 08075730, Vince Bayou at Pasadena, Tex. Figure 16.- Locations of data-collection sites in and near the Vince Bayou drainage basin UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY-TEXAS DISTRICT TX-35 Rev. 5/80 ANNUAL STORM RAINFALL-RUNOFF SUMMARY DATA Table 15 -- Storm rainfall-runoff data, 1984 Water Year, Vince Eayou | 85%
Duration | uo | Weighted | Rainfall
Maximum Incr | Rainfall (inches)
Maximum Increment Recorded in Basin | ed in Basin | Runoff | Ratio
runoff to | Maximum
discharge | |-----------------|-----|----------|--|--|-------------|----------|--------------------|----------------------| | (hours) Total | 130 | | 15-minute 30-minute | 30-minute | 60-minute | (inches) | rainfall | (tt ³ /s) | | | | | Vince Bayou at Pasadena, TX.
(Drainage Area 7.32 mi. ²) | t Pasadena, 1
a 7.32 mi. | ۲X.
2) | | | | | 0.8 | 3. | 3.12 | 0.96 | 1.80 | 2.88 | 1.22 | 0.39 | 1800* | , | 1 | | | | | | | | | | l | ł | - | | | | | | | | 1 | | | | | | | * - Peak Discharge for 1984 Water Year ### 08075730 VINCE BAYOU AT PASADENA, TX LOCATION. -- Lat 29°41'40", long 95°12'58", Harris County, Hydrologic Unit 12040104, on right bank of concrete lined channel at end of West Ellaine Avenue in Pasadena and 2.4 mi upstream from mouth. DRAINAGE AREA.--7.32 mi². Prior to Jan. 1, 1978, 8.21 mi². Jan. 1 to Sept. 30, 1978, 7.61 mi². Drainage area revisions due to drainage ditch changes. PERIOD OF RECORD .-- October 1971 to current year. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 2.54 ft below National Geodetic Vertical Datum of 1929, 1973 adjustment; unadjusted for land-surface subsidence (levels by Corps of Engineers). Telemeter located at station. REMARKS .-- Records fair. Low flow is sustained by sewage effluent. AVERAGE DISCHARGE. -- 13 years, 16.9 ft3/s (12,240 acre-ft/yr). EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 4,720 ft 3/8 May 3, 1981 (gage height, 18.30 ft); no flow Aug. 5, 6, 18, 1972. EXTREMES FOR CURRENT YEAR .-- Peak discharges above base of 1,400 ft3/s and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |---------|------|----------------------|---------------------| | Nov. 30 | 1545 | 1,440 | 13.29 | | Aug. 12 | 1545 | *1,800 | 14.00 | Minimum daily discharge, 0.16 ft3/s Apr. 18. | | | DISCHAR | GE, IN CUB | IC FEET | | D, WATER
EAN VALU | YEAR OCTOBI | ER 1983 | TO SEPTEM | BER 1984 | | | |----------------------------------|--------------------------------------|---|--|--|---|--|------------------------------------|--|-----------------------------------|---|--
--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .30
.30
.30
.30 | 15.00
3.90
.81
.57
1.10 | 6.10
4.10
128.00
4.30
4.40 | 1.70
2.00
.74
1.60
2.10 | 1.4
3.2
2.2
2.0
1.6 | 1.20
1.10
1.00
1.40
22.00 | 8.80
1.40
.80 | .6
2.1
1.3
1.1
1.9 | 3.0
3.3
3.9
3.4
3.7 | 113.00
6.40
1.20
1.20
1.20 | 1.2
1.1
36.0
18.0
2.4 | 5.1
241.0
153.0
16.0
2.6 | | 6
7
8
9
10 | .35
.65
.46
.35 | 54.00
2.60
.84
16.00
4.00 | 1.20
.57
.51
.66
68.00 | 2.90
1.10
5.40
263.00
18.00 | 1.1
1.4
1.3
93.0
5.5 | 1.90
1.30
1.10
1.40
1.30 | 1.30
3.10
.34 | 1.4
1.1
1.8
1.5 | 93.0
12.0
4.5
5.2
5.3 | 1.20
1.10
1.00
1.20
.91 | 7.0
2.8
1.4
1.4
2.7 | 1.8
15.0
8.U
3.1
2.8 | | 11
12
13
14
15 | .35
.67
.35
.31 | .84
.56
.47
.60 | 18.00
2.70
1.50
1.20
.88 | 3.40
1.90
1.60
5.80
4.00 | 2.3
70.0
5.2
2.3
8.0 | 1.60
12.00
93.00
2.10
1.20 | .30
.30
.28 | 2.0
2.7
2.8
3.6
2.1 | 13.0
4.6
2.4
2.2
2.1 | 1.00
.98
1.00
.83
.68 | 1.5
231.0
17.0
71.0
31.0 | 3.1
3.0
3.0
3.2
4.8 | | 16
17
18
19
20 | 4.80
32.00
1.70
.49
3.40 | .56
.53
.56
35.00
4.00 | 81.00
9.00
2.50
2.40
1.00 | 1.60
2.10
1.40
1.20
1.00 | 4.5
2.5
2.2
2.4
24.0 | .92
.69
.61
17.00
1.10 | .17
.16
.23 | 2.7
3.8
11.0
134.0
27.0 | 2.2
2.1
5.4
1.7 | .56
.56
49.00
21.00
1.90 | 2.8
1.7
1.8
1.9 | 2.7
3.9
4.7
4.9
3.8 | | 21
22
23
24
25 | 1.90
.57
.44
.43
.40 | .80
3.90
31.00
1.80
.92 | 67.00
4.40
1.80
1.80 | .75
.68
161.00
26.00
5.80 | 7.4
2.5
1.9
2.2
1.4 | .79
.69
1.80
4.10
.87 | .42
.25 | 4.6
3.2
8.0
20.0
11.0 | 7.2
1.4
1.4
1.3 | .79
.69
.87
4.10
40.00 | 1.9
2.0
2.2
207.0
29.0 | 79.0
28.0
5.3
1.8
1.4 | | 26
27
28
29
30
31 | .44
.44
.62
.58
.56 | 1.90
15.00
2.00
1.50
146.00 | 1.50
1.50
1.50
1.50
1.60
1.30 | 2.50
1.80
1.40
1.30
1.80
1.40 | 66.0
4.9
1.6
1.0 | .87
1.00
4.00
.65
.43 | .98
1.70
1.20
.83
1.10 | 7.0
5.5
38.0
33.0
6.5
5.0 | 1.5
1.6
2.6
1.5
2.3 | 22.00
12.00
11.00
6.80
2.00
1.30 | 7.6
43.0
13.0
3.3
2.3
4.1 | 2.3
1.7
1.3
1.3 | | TOTAL MEAN MAX MIN AC-FT CAL YR | | | | | 325.0
11.2
93
1.0
645
MAX 1600 | | 27.69
.92
8.8
.16
.55 | 347.8
11.2
134
.60
690 | 196.6
6.55
93
1.3
390 | 307.47
9.92
113
.56
610 | 750.9
24.2
231
1.1
1490 | 609.0
20.3
241
1.3
1210 | | WTR YR | 1984 TOTA | AL 4157. | 65 MEAN | 11.4 | MAX 263 | MIN . | .16 AC-FT | 8250 | | | | | # STORM RAINFALL AND RUNOFF OBO75730 VINCE BAYOU AT PASADENA, TEX. --CONTINUED | DATE
AND
TIME | | ACCUMU-
LATED
WEIGHTED
RAINFALL | DISCHARGE | ACCUMU-
LATED
RUNOFF | |---------------------|--------------|--|-----------------------|--| | | GAGE
5725 | | (CUBIC
FEET
PER | | | | (INCHES) | (INCHES) | SECOND) | (INCHES) | | AUG. 12 | | OF AUG. 1 | 2-13, 1 9 84 | منان عبيب واحل نحان نياب واحل أدبي طالبا واحل أدبيه فاؤله واحل الم | | | 0. 0 | 0.0 | 4 2 | 0.0047 | | 1200 | 0. 0 | 0. 0
0. 0 | 1.3
1.3 | | | 1445 | 0. 0 | 0. 0 | | 0. 0037
0. 0367 | | 1500 | 0. 72 | | 200. 0 | 0. 0357
0. 0473 | | 1515 | 1. 68 | 1. 68 | | 0. 0473
0. 0651 | | 1530 | 2. 52 | 2. 52 | | 0. 1344 | | 1545 | 2. 88 | 2. 8 8 | | 0. 2297 | | | 2. 88 | 2. 88 | | 0. 3217 | | | 2. 88 | 2. 88 | | 0. 4075 | | 1630 | 2. 88 | 2. 8 8 | | 0. 48 69 | | 1645 | 3. 00 | 3. 00 | | 0. 5610 | | 1700 | 2. 88 | 2. 8 8 | | 0. 6642 | | 1730 | 3. 00 | 3. 00 | | 0. 7721 | | 1800 | 3.00 | | 780. 0 | 0. 8547 | | 1830 | 3.00 | | 605. O | 0. 9187 | | 1900 | 3.00 | | 429 . 0 | 0. 9641 | | 1930 | 3. 00 | | 340. 0 | 1.0001 | | 2000 | 3. 00 | | 250. 0 | 1. 0398 | | 2100 | 3. 00 | | 172. 0 | 1. 0762 | | 5500 | 3. 00 | | 124. 0 | 1. 1025 | | 2300 | 3. 00 | | 92. 0 | 1. 1219 | | 2400 | 3. 00 | 3. 00 | 73. 0 | 1. 1374 | | AUG. 13 | | | | | | 0000 | 3. 00 | 3.00 | 73. 0 | 1. 1374 | | 0100 | 3. 00 | 3. 00 | 58 . 0 | 1. 1497 | | 0200 | 3.00 | 3. 00 | 4 6. 0 | 1. 1594 | | 0300 | 3. 00 | 3. 00 | 36 . 0 | 1. 1708 | | 0500 | 3. 00 | 3.00 | 24. 0 | 1. 1785 | | 0600 | 3. 00 | 3.00 | 20.0 | 1. 1848 | | 0800 | 3. 00 | 3. 00 | 16. 0 | 1. 1916 | | 1000 | 3. 00 | 3. 00 | 12. 0 | 1. 1967 | | 1200 | 3. 00 | 3.00 | 9 . 3 | 1. 2016 | | 1500 | 3. 00 | 3. 00 | .7. 6 | 1. 2048 | | 1600 | 3. 12 | 3. 12 | 7. 4 | 1. 2064 | | 1700 | 3. 12 | 3. 12 | 7. 1 | 1. 2079 | | 1800 | 3. 12 | 3. 12 | 16. 0 | 1. 2113 | | 1900 | 3. 12 | 3. 12 | 9. 9 | 1. 2134 | | 2000 | 3. 12 | 3. 12 | 7. 6 | 1. 2174 | | 2400 | 3. 12 | 3. 12 | 4. 4 | 1. 2192 | ### HUNTING BAYOU DRAINAGE BASIN The locations of data-collection sites in and near the Hunting Bayou drainage basin are shown in figure 17. Weighted-mean rainfall in the drainage basin based on two rain gages for the 1984 water year was 32.21 inches, or 15.98 inches less than the 30-year (1941-70) average of 48.19 inches for Houston. The monthly totals, in inches, for the 1984 water year weighted-mean rainfall are as follows: Oct. Jan. Feb. Mar. Apr. May June July Aug. Total Nov. Dec. Sep. 2.26 3.06 3.02 3.72 3.32 2.06 0.83 1.73 2.30 2.07 32.21 2.80 5.04 The storm of Jan. 9-10 was selected for analysis at station 08075760, Hunting Bayou at Falls Street. The storm of Jan. 9-12 was selected for analysis at station 08075770, Hunting Bayou at Interstate Highway 610.